Method for the determination of ammonium in cigarette tobacco using ion chromatography.

Regul Toxicol Pharmacol

Centers for Disease Control and Prevention, National Center for Environmental Health, Division of Laborartory Sciences, Tobacco and Volatiles Branch, Mailstop F-47, 4770 Buford Highway, N.E., Atlanta, GA 31314, United States.

Published: July 2015

Ammonia and other alkaline substances have been postulated to be important in cigarette design. The most significant potential contribution of ammonia is a possible interaction with the native, protonated nicotine in the smoke. Ammonia is more alkaline than nicotine and could facilitate a shift in the acid/base equilibrium where a fraction of the total nicotine converts to the more lipophilic, non-protonated form. This non-protonated, or free-base, form of nicotine absorbs more efficiently across membranes, resulting in more rapid delivery to the smoker's bloodstream. Ammonia and other potential ammonia sources, such as additives like diammonium phosphate, could influence the acid-base dynamics in cigarette smoke and ultimately the rate of nicotine delivery. To examine and characterize the ammonia content in modern cigarettes, we developed a fast, simple and reliable ion chromatography based method to measure extractable ammonia levels in cigarette filler. This approach has minimal sample preparation and short run times to achieve high sample throughput. We quantified ammonia levels in tobacco filler from 34 non-mentholated cigarette brands from 3 manufacturers to examine the ranges found across a convenience sampling of popular, commercially available domestic brands and present figures of analytical merit here. Ammonia levels ranged from approximately 0.9 to 2.4mg per gram of cigarette filler between brands and statistically significance differences were observed between brands and manufacturers. Our findings suggest that ammonia levels vary by brand and manufacturer; thus in domestic cigarettes ammonia could be considered a significant design feature because of the potential influence on smoke chemistry.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5712451PMC
http://dx.doi.org/10.1016/j.yrtph.2015.04.019DOI Listing

Publication Analysis

Top Keywords

ammonia levels
16
ammonia
11
ion chromatography
8
ammonia alkaline
8
cigarette filler
8
brands manufacturers
8
cigarette
6
nicotine
5
method determination
4
determination ammonium
4

Similar Publications

The tambaqui (Colossoma macropomum, G. Cuvier 1818) thrives both in the ion-poor waters of the Amazon and in commercial aquaculture. In both, environmental conditions can be harsh due to low ion levels, occasional high salt challenges (in aquaculture), low pH, extreme PO levels (hypoxia and hyperoxia), high PCO levels (hypercapnia), high ammonia levels (in aquaculture), and high and low temperatures.

View Article and Find Full Text PDF

An experiment was conducted for 60 days in a 500L capacity FRP tank containing inland ground saline water (fortified to a level of 50% potassium) with one control (sediment) and three treatments; T1(Paddy Straw Biochar (PSB) in sediment), T2 (Banana Peduncle Biochar (BPB) in sediment), and T3 (PSB + BPB in sediment). Biochar (100 g) was amended with sediment (25 kg) at 9 tons/ha. Shrimps of average weight 5 ± 0.

View Article and Find Full Text PDF

A Small-Molecule Inhibitor of Gut Bacterial Urease Protects the Host from Liver Injury.

ACS Chem Biol

January 2025

Harvard University, Department of Chemistry and Chemical Biology, Cambridge, Massachusetts 02138, United States.

Hyperammonemia is characterized by the accumulation of ammonia within the bloodstream upon liver injury. Left untreated, hyperammonemia contributes to conditions such as hepatic encephalopathy that have high rates of patient morbidity and mortality. Previous studies have identified gut bacterial urease, an enzyme that converts urea into ammonia, as a major contributor to systemic ammonia levels.

View Article and Find Full Text PDF

Niche Partitioning and Intraspecific Variation of Thaumarchaeota in Deep Ocean Sediments.

Environ Microbiol

January 2025

Frontiers Science Center for Deep Ocean Multispheres and Earth System, and College of Marine Life Sciences, Ocean University of China, Qingdao, China.

Deep-sea sediments contain a large number of Thaumarchaeota that are phylogenetically distinct from their pelagic counterparts. However, their ecology and evolutionary adaptations are not well understood. Metagenomic analyses were conducted on samples from various depths of a 750-cm sediment core collected from the Mariana Trench Challenger Deep.

View Article and Find Full Text PDF

Ascomycin (FK520) is a 23-membered macrolide antibiotic primarily produced by the Streptomyces hygroscopicus var. ascomyceticus. Structurally similar to tacrolimus and rapamycin, it serves as an effective immunosuppressant widely used in the treatment of rejection reactions after organ transplantation and certain autoimmune diseases.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!