Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Biodegradable hydrogels of gum ghatti (Gg) with a co-polymer mixture of acrylamide (AAm) and methacrylic acid (MAA) (termed as Gg-cl-P(AAm-co-MAA)) were synthesised by microwave-assisted free radical graft co-polymerisation technique. The hydrogel polymer was characterized by FTIR, SEM, and Brunauer-Emmett-Teller techniques. The Gg-cl-P(AAm-co-MAA) hydrogel was studied as an adsorbent for the removal of methylene blue (MB) and methyl violet (MV) from aqueous solutions. Adsorption of both the dyes followed pseudo-second-order kinetics and Langmuir adsorption isotherm models. The hydrogel polymer adsorbed 98% of MB and 95% of MV from aqueous solution. The Gg-cl-P(AAm-co-MAA) maintained its original sorption capacity for three cycles of adsorption-desorption. Furthermore, the hydrogel polymer degraded fully within 50 days in soil compost. In summary, the Gg-cl-P(AAm-co-MAA) hydrogel could be a potential adsorbent for the remediation of dyes from industrial wastewater.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ijbiomac.2015.04.045 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!