We present SIMION 8.1 Monte Carlo type simulations of the response function and detection solid angle for long lived Auger states (lifetime τ ∼ 10(-9) - 10(-5) s) recorded by a hemispherical spectrograph with injection lens and position sensitive detector used for high resolution Auger spectroscopy of ion beams. Also included in these simulations for the first time are kinematic effects particular to Auger emission from fast moving projectile ions such as line broadening and solid angle limitations allowing for a more accurate and realistic line shape modeling. Our results are found to be in excellent agreement with measured electron line shapes of both long lived 1s2s2p(4)P and prompt Auger projectile states formed by electron capture in collisions of 25.3 MeV F(7+) with H2 and 12.0 MeV C(4+) with Ne recorded at 0° to the beam direction. These results are important for the accurate evaluation of the 1s2s2p (4)P/(2)P ratio of K-Auger cross sections whose observed non-statistical production by electron capture into He-like ions, recently a field of interesting interpretations, awaits further resolution.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1063/1.4917274 | DOI Listing |
Sensors (Basel)
January 2025
Wearable and Gait Assessment Research (WAGAR) Group, Prince of Wales Private Hospital, Randwick, NSW 2031, Australia.
Introduction: Gait analysis is a vital tool in the assessment of human movement and has been widely used in clinical settings to identify potential abnormalities in individuals. However, there is a lack of consensus on the normative values for gait metrics in large populations. The primary objective of this study is to establish a normative database of spatiotemporal gait metrics across various age groups, contributing to a broader understanding of human gait dynamics.
View Article and Find Full Text PDFMicromachines (Basel)
December 2024
Electronic Convergence Division, Korea Institute of Ceramic Engineering & Technology, 101, Soho-Ro, Jinju 52851, Republic of Korea.
Developing thin-film sheets made of oxide-based solid electrolytes is essential for fabricating surface-mounted ultracompact multilayer oxide solid-state batteries. To this end, solid-electrolyte slurry must be optimized for excellent dispersibility. Although oxide-based solid electrolytes for multilayer structures require sintering, high processing temperatures cause problems such as Li-ion volatilization and reactions with graphite anodes.
View Article and Find Full Text PDFJ Phys Chem B
January 2025
Department of Polymers for Electronics and Photonics, Institute of Macromolecular Chemistry, Czech Academy of Sciences, Heyrovského nám. 2, Prague 6 162 00, Czech Republic.
The structural response of 1,2-dimyristoyl-glycero-3-phosphatidylcholine (DMPC)/water bilayers to addition and subsequent solvation of a small amphiphilic molecule - an anesthetic benzyl alcohol - was studied by means of solid-state NMR (H NMR, P NMR) spectroscopy and low-angle X-ray diffraction. The sites of binding of this solute molecule within the bilayer were determined - the solute was shown to partition between several sites in the bilayer and the equilibrium was shown to be dynamic and dependent on the level of hydration and temperature. At the same time, it was shown that solubilization of benzyl alcohol reached a solubility limit and was terminated when the ordering profile of DMPC hydrocarbon chains adopted finite limiting values throughout the whole chain.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
January 2025
Universität Rostock, Institut für Chemie, Albert-Einstein-Str. 3a, 18059, Rostock, GERMANY.
The linkage of an imidazole-based N-heterocyclic olefin (NHO), containing a terminal CH2 donor group, with a phosphorus-centered diradical molecular fragment leads to an open-shell singlet diphospha-indenylide system, a new class of P-heterocycles, which can be interpreted both as a phosphorus-centered diradicaloid and as a zwitterion with a permanent, overall charge separation between the N- and P-heterocyclic ring systems. The rotation of the imidazole ring, which is thermally possible due to a central C-C bond with a weakened π-component, changes both the charge separation and diradical character depending on the dihedral angle, as quantum mechanical calculations indicate. By varying the bulkiness of substituents at the imidazole-based NHO, it was possible to obtain different diphospha-indenylide species with different rotation angles in the solid state and hence varying diradical character.
View Article and Find Full Text PDFMater Horiz
January 2025
Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, New York 14853, USA.
As the demand for high-power-density microelectronics rises, overheating becomes the bottleneck that limits device performance. In particular, the heterogeneous integration architecture can magnify the importance of heat dissipation and necessitate electrical insulation between critical junctions to prevent dielectric breakdown. Consequently, there is an urgent need for thermal interface materials (TIMs) with high thermal conductivity and electrical insulation to address this challenge.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!