Critical properties of the superfluid-bose-glass transition in two dimensions.

Phys Rev Lett

Laboratoire de Physique Théorique, IRSAMC, Université de Toulouse, CNRS, 31062 Toulouse, France.

Published: April 2015

We investigate the superfluid (SF) to Bose-glass (BG) quantum phase transition using extensive quantum Monte Carlo simulations of two-dimensional hard-core bosons in a random box potential. T=0 critical properties are studied by thorough finite-size scaling of condensate and SF densities, both vanishing at the same critical disorder Wc=4.80(5). Our results give the following estimates for the critical exponents: z=1.85(15), ν=1.20(12), η=-0.40(15). Furthermore, the probability distribution of the SF response P(lnρSF) displays striking differences across the transition: while it narrows with increasing system sizes L in the SF phase, it broadens in the BG regime, indicating an absence of self-averaging, and at the critical point P(lnρSF+zlnL) is scale invariant. Finally, high-precision measurements of the local density rule out a percolation picture for the SF-BG transition.

Download full-text PDF

Source
http://dx.doi.org/10.1103/PhysRevLett.114.155301DOI Listing

Publication Analysis

Top Keywords

critical properties
8
critical
5
properties superfluid-bose-glass
4
transition
4
superfluid-bose-glass transition
4
transition dimensions
4
dimensions investigate
4
investigate superfluid
4
superfluid bose-glass
4
bose-glass quantum
4

Similar Publications

Prostaglandin E2 (PGE-2) is synthesised by cyclooxygenase-2 (COX-2) and microsomal prostaglandin E synthase 1 (mPGES-1). PGE-2 exhibits pro-inflammatory properties in inflammatory conditions. However, there remains limited understanding of the COX-2/mPGES-1/PGE-2 pathway in Angiostrongylus cantonensis-induced meningoencephalitis.

View Article and Find Full Text PDF

Aim: To identify instruments used to measure patient-reported outcomes after LT, and critically evaluate their measurement properties.

Methods: Five online databases were searched to find English-language LT-specific PROMs from their inception to October 2024. Studies describing the development or validation of PROMs were included.

View Article and Find Full Text PDF

Carving Metal-Organic-Framework Glass Based Solid-State Electrolyte Via a Top-Down Strategy for Lithium-Metal Battery.

Angew Chem Int Ed Engl

January 2025

KU Leuven, Materials engineering, Kasteelpark Arenberg 44 bus 2450, 3001 LEUVEN Belgium, LEUVEN, BELGIUM.

Traditional polymer solid electrolytes (PSEs) suffer from low Li conductivity, poor kinetics and safety concerns. Here, we present a novel porous MOF glass gelled polymer electrolyte (PMG-GPE) prepared via a top-down strategy, which features a unique three-dimensional interconnected graded-aperture structure for efficient ion transport. Comprehensive analyses, including time-of-flight secondary ion mass spectrometry (TOF-SIMS), Solid-state 7Li magic-angle-spinning nuclear magnetic resonance (MAS-NMR), Molecular Dynamics (MD) simulations, and electrochemical tests, quantify the pore structures, revealing their relationship with ion conductivity that increases and then decreases as macropore proportion rises.

View Article and Find Full Text PDF

Amino acids are fundamental building blocks of proteins, playing critical roles in medical diagnostics, environmental monitoring, and biomarker identification. The development of nanoscale electronic sensors capable of single-amino-acid recognition has gained significant attention due to their potential for label-free, real-time detection. In this study, we investigate the electronic transport properties of amino acids in two gold-based nanodevices with distinct architectures: a gold nanojunction and a gold-capacitor system.

View Article and Find Full Text PDF

Electron delocalization is studied in the ground singlet and first excited triplet states of azulene-containing helicenes. After showing that the compounds we study can be synthesized, we show that they exhibit a charge separation in the ground state, which does not appear in their triplet excited state. Then, magnetically induced properties (IMS3D and ACID) and electron density decomposition methods (EDDB) are used to rationalize aromaticity in these systems.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!