Correct protein folding and inhibition of protein aggregation is facilitated by a cellular "quality control system" that engages a network of protein interactions including molecular chaperones and the ubiquitin proteasome system. Key chaperones involved in these regulatory mechanisms are the protein disulfide isomerases (PDI) and their homologs, predominantly expressed in the endoplasmic reticulum of most tissues. Redox changes that disrupt ER homeostasis can lead to modification of these enzymes or chaperones with the loss of their proposed neuroprotective role resulting in an increase in protein misfolding. Misfolded protein aggregates have been observed in several disease states and are considered to play a pivotal role in the pathogenesis of neurodegenerative conditions such as Alzheimer's disease, Parkinson's disease, and Amyotrophic Lateral sclerosis. This review will focus on the importance of the thioredoxin-like CGHC active site of PDI and how our understanding of this structural motif will play a key role in unraveling the pathogenic mechanisms that underpin these neurodegenerative conditions.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4399332PMC
http://dx.doi.org/10.3389/fchem.2015.00027DOI Listing

Publication Analysis

Top Keywords

neurodegenerative conditions
12
protein disulfide
8
protein
7
s-nitrosylation thioredoxin-like
4
thioredoxin-like domains
4
domains protein
4
disulfide isomerase
4
role
4
isomerase role
4
role neurodegenerative
4

Similar Publications

Introduction: Parkinson's disease (PD) is a common neurodegenerative disease. Glucagon-Like-Peptide-1 (GLP-1) receptor agonists decrease the incidence of developing PD, and are being considered for the treatment of PD.

Areas Covered: A phase 2 clinical trial of lixisenatide, a GLP-1 receptor agonist, in the early stages of PD.

View Article and Find Full Text PDF

Stereocontrolled construction of tetrasubstituted olefins has been an attractive issue yet remains challenging for synthetic chemists. In this manuscript, alkynyl selenides, when treated with ArBCl, are subject to an exclusive 1,1-carboboration, affording tetrasubstituted alkenes with excellent levels of E-selectivity. Detailed mechanistic studies, supported by DFT calculations, elucidates the role of selenium in this 1,1-addition process.

View Article and Find Full Text PDF

Traumatic brain injury (TBI) is identified as a risk factor for Parkinson's disease (PD), which is a neurodegenerative disease characterized by the loss of dopaminergic neurons in the substantia nigra (SN). However, the precise mechanism by which chronic TBI initiates PD pathogenesis is not yet fully understood. In our present study, we assessed the chronic progression and pathogenesis of PD-like behavior at different intervals in TBI mice.

View Article and Find Full Text PDF

Evaluating amyloid-beta aggregation and toxicity in transgenic Caenorhabditis elegans models of Alzheimer's disease.

Methods Cell Biol

January 2025

Federal University of Santa Maria, Center for Natural and Exact Sciences, Department of Biochemistry and Molecular Biology, Graduate Program in Biological Sciences: Toxicological Biochemistry, Camobi, Santa Maria, RS, Brazil.

Alzheimer's disease (AD) is the leading cause of dementia in the elderly, clinically characterized by memory loss, cognitive decline, and behavioral disturbances. Its pathogenesis is not fully comprehended but involves intracellular depositions of amyloid beta peptide (Aβ) and neurofibrillary tangles of hyperphosphorylated tau. Currently, pharmacological interventions solely slow the progression of symptoms.

View Article and Find Full Text PDF

The foremost cause of dementia is Alzheimer's disease (AD). The vital pathological hallmarks of AD are amyloid beta (Aβ) peptide and hyperphosphorylated tau (p-tau) protein. The current animal models used in AD research do not precisely replicate disease pathophysiology, making it difficult for researchers to quickly and effectively gather data or screen potential therapy possibilities.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!