Cryopreservation for preservation of potato genetic resources.

Breed Sci

Gene Research Center, University of Tsukuba, Tsukuba, Ibaraki 305-8572 , Japan ; Centro Nacional de Recursos Genéticos, INIFAP , Tepatitlán de Morelos 47600 , México.

Published: March 2015

Cryopreservation is becoming a very important tool for the long-term storage of plant genetic resources and efficient cryopreservation protocols have been developed for a large number of plant species. Practical procedures, developed using in vitro tissue culture, can be a simple and reliable preservation option of potato genetic resources rather than maintaining by vegetative propagation in genebanks due their allogamous nature. Cryopreserved materials insure a long-term backup of field collections against loss of plant germplasm. Occurrence of genetic variation, in tissue culture cells during prolonged subcultures, can be avoided with suitable cryopreservation protocols that provide high regrowth, leading and facilitating a systematic and strategic cryo-banking of plant genetic resources. Cryopreservation protocols for potato reviewed here, can efficiently complement field and in vitro conservation, providing for preservation of genotypes difficult to preserve by other methods, wild types and other species decided as priority collections.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4374563PMC
http://dx.doi.org/10.1270/jsbbs.65.41DOI Listing

Publication Analysis

Top Keywords

genetic resources
16
cryopreservation protocols
12
potato genetic
8
resources cryopreservation
8
plant genetic
8
tissue culture
8
cryopreservation
5
genetic
5
cryopreservation preservation
4
preservation potato
4

Similar Publications

The First International Symposium of the World Wild Rice Wiring: Conservation and Utilization of Global Wild Rice Germplasm Resources through International Cooperation.

Mol Plant

January 2025

National Nanfan Research Institute, Chinese Academy of Agricultural Sciences, Sanya 572000, China; State Key Laboratory of Crop Gene Resources and Breeding/ Key laboratory Grain Crop Genetic Resources Evaluation and Utlization Ministry of Agriculture and Rural Affairs, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China; Yazhouwan National Laboratory, Sanya 572000, China. Electronic address:

As drastic climatic changes significantly impact global agriculture, the importance of conserving and utilizing wild germplasm has gained prominance. In this context, the conservation and sustainable utilization of wild rice germplasm resources have become a high priority. Although efforts to conserve and sustainably utilize wild rice germplasm are underway globally, they are fragmented and require international cooperation to advance climate-resilient rice breeding and ensure future food securiety.

View Article and Find Full Text PDF

Background: Bilateral risk-reducing mastectomies (RRMs) have been proven to decrease the risk of breast cancer in patients at high risk owing to family history or having pathogenic genetic mutations. However, few resources with consolidated data have detailed the patient experience following surgery. This systematic review features patient-reported outcomes for patients with no breast cancer history in the year after their bilateral RRM.

View Article and Find Full Text PDF

People from refugee and migrant backgrounds often face poor experiences and outcomes in healthcare, and genetic healthcare is no exception. Understanding whether and how these health inequities manifest is an important step towards equitable perinatal genetic screening for genetic or chromosomal conditions (offered preconception, prenatally, or during the newborn period). A scoping review was conducted to review international evidence of perceptions and experiences of perinatal genetic screening for people from migrant and refugee backgrounds.

View Article and Find Full Text PDF

Dementia refers to an umbrella phenotype of many different underlying pathologies with Alzheimer's disease (AD) being the most common type. Neuropathological examination remains the gold standard for accurate AD diagnosis, however, most that we know about AD genetics is based on Genome-Wide Association Studies (GWAS) of clinically defined AD. Such studies have identified multiple AD susceptibility variants with a significant portion of the heritability unexplained and highlighting the phenotypic and genetic heterogeneity of the clinically defined entity.

View Article and Find Full Text PDF

Rapid and accurate multi-phenotype imputation for millions of individuals.

Nat Commun

January 2025

Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture and Rural Affairs & Fisheries college, Jimei University, Xiamen, Fujian, People's Republic of China.

Deep phenotyping can enhance the power of genetic analysis, including genome-wide association studies (GWAS), but the occurrence of missing phenotypes compromises the potential of such resources. Although many phenotypic imputation methods have been developed, the accurate imputation of millions of individuals remains challenging. In the present study, we have developed a multi-phenotype imputation method based on mixed fast random forest (PIXANT) by leveraging efficient machine learning (ML)-based algorithms.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!