[Purpose] The present study investigated the effects of gait speed on temporal and spatial gait characteristics of hemiplegic stroke patients. [Subjects and Methods] Twenty post-stroke hemiplegic patients participated in the present study. To enhance the reliability of the analysis of the gait characteristics, the assessments were conducted three days per week at the same time every day. Each subject walked maintaining a comfortable speed for the first minute, and measurement was conducted for 30 seconds at a treadmill speed of 1 km/hour thereafter. Then, the subjects walked at a treadmill speed of 2 km/hour for 30 seconds after a 30-minute rest. The differences in the measurements were tested for significance using the paired t-test. [Results] The measures of foot rotation, step width, load response, mid stance, pre-swing, swing phase, and double stance phase showed significant difference between the gait velocities. [Conclusion] The present study provides basic data for gait velocity changes for hemiplegic patients.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4395743PMC
http://dx.doi.org/10.1589/jpts.27.921DOI Listing

Publication Analysis

Top Keywords

gait characteristics
12
hemiplegic patients
12
effects gait
8
gait velocity
8
characteristics hemiplegic
8
treadmill speed
8
gait
6
velocity gait
4
hemiplegic
4
patients
4

Similar Publications

The clinical presentation and genetic diagnosis of Tangier disease in the pediatric age group.

J Pediatr Endocrinol Metab

January 2025

Division of Pediatric Neurology, Department of Pediatrics and Child Health, Erciyes University, Faculty of Medicine, Kayseri, Türkiye.

Objectives: Tangier disease (TD) is a rare autosomal recessive condition characterized by high-density lipoprotein (HDL) deficiency; involving symptoms of polyneuropathy, hyperplastic orange-yellow tonsils, vision disorder, and sudden cardiac death. The major clinical symptoms of TD may not all be co-present. This study evaluates patients diagnosed with TD in childhood to improve the possibility of early diagnosis of asymptomatic cases by reporting our patients' clinical characteristics in order to minimize delayed diagnosis and emphasize the importance of TD, easily detected by HDL measurement.

View Article and Find Full Text PDF

Background: Calf muscle weakness is a common symptom in slowly progressive neuromuscular disorders that lead to walking problems like instability and increased walking effort. The mainstay of treatment to improve walking in this population is the provision of ankle-foot-orthoses (AFOs). Since we are not aware of an up-to-date and complete overview of the effects of AFOs used for calf muscle weakness in slowly progressive neuromuscular disorders, we reviewed the evidence for the effectiveness of AFOs to improve walking in this patient group, in order to support clinical decision-making.

View Article and Find Full Text PDF

White Matter Fiber Bundle Alterations Correlate with Gait and Cognitive Impairments in Parkinson's Disease based on HARDI Data.

Curr Med Imaging

January 2025

Department of Radiology, Beijing Friendship Hospital, Capital Medical University, No. 95, Yong An Road, Xicheng District, Beijing 100050, China.

Background: The neuroanatomical basis of white matter fiber tracts in gait impairments in individuals suffering from Parkinson's Disease (PD) is unclear.

Methods: Twenty-four individuals living with PD and 29 Healthy Controls (HCs) were included. For each participant, two-shell High Angular Resolution Diffusion Imaging (HARDI) and high-resolution 3D structural images were acquired using the 3T MRI.

View Article and Find Full Text PDF

Background: Neurological disorders pose a substantial burden worldwide in healthcare and health research. eHealth has emerged as a promising field given its potential to aid research, with lower resources. With a changing eHealth landscape, identifying available tools is instrumental for informing future research.

View Article and Find Full Text PDF

Neuromuscular controllers (NMCs) offer a promising approach to adaptive and task-invariant control of exoskeletons for walking assistance, leveraging the bioinspired models based on the peripheral nervous system. This article expands on our previous development of a novel structure for NMCs with modifications to the virtual muscle model and reflex modulation strategy. The modifications consist firstly of simplifications to the Hill-type virtual muscle model, resulting in a more straightforward formulation and reduced number of parameters; and second, using a finer division of gait subphases in the reflex modulation state machine, allowing for a higher degree of control over the shape of the assistive profile.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!