A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Bacterial division. Mechanical crack propagation drives millisecond daughter cell separation in Staphylococcus aureus. | LitMetric

Bacterial division. Mechanical crack propagation drives millisecond daughter cell separation in Staphylococcus aureus.

Science

Department of Biochemistry, Stanford University School of Medicine, Stanford, CA 94305, USA. Howard Hughes Medical Institute (HHMI), Stanford University School of Medicine, Stanford, CA 94305, USA. Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA.

Published: May 2015

When Staphylococcus aureus undergoes cytokinesis, it builds a septum, generating two hemispherical daughters whose cell walls are only connected via a narrow peripheral ring. We found that resolution of this ring occurred within milliseconds ("popping"), without detectable changes in cell volume. The likelihood of popping depended on cell-wall stress, and the separating cells split open asymmetrically, leaving the daughters connected by a hinge. An elastostatic model of the wall indicated high circumferential stress in the peripheral ring before popping. Last, we observed small perforations in the peripheral ring that are likely initial points of mechanical failure. Thus, the ultrafast daughter cell separation in S. aureus appears to be driven by accumulation of stress in the peripheral ring and exhibits hallmarks of mechanical crack propagation.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4864021PMC
http://dx.doi.org/10.1126/science.aaa1511DOI Listing

Publication Analysis

Top Keywords

peripheral ring
16
mechanical crack
8
crack propagation
8
daughter cell
8
cell separation
8
staphylococcus aureus
8
stress peripheral
8
ring
5
bacterial division
4
division mechanical
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!