Contributions of Visuo-oculomotor Abilities to Interceptive Skills in Sports.

Optom Vis Sci

*MS †PhD School of Optometry, Tianjin Vocational Institute, Tianjin, China (YG, LC, HW); Vision Performance Institute, Pacific University College of Optometry, Forest Grove, Oregon (S-nY); and Laboratory for Psychophysiological Research in Sports, Tianjin University of Sport, Tianjin, China (JY, QD, SC).

Published: June 2015

Purpose: Monitoring and intercepting a fast approaching object is a critical skill for many sports. Athletes might be distinguished from nonathletes based on their ability to access various visual abilities to accomplish interceptive actions. Here, we examined whether interceptive visuomotor skills of athletes and nonathletes are differently correlated to a hierarchy of visuo-oculomotor abilities related to the perception of motion in depth.

Methods: Eighty-six athletes in interceptive sports, as well as 60 nonathletes, were recruited based on their sport performance and prior experiences. Their basic visual abilities (dominant eye acuity, contrast sensitivity, visual span, and visual memory) and complex visuo-oculomotor abilities (dynamic acuity, accommodative facility, near point of convergence, and near/far phoria) were analyzed in relation to critical visuomotor skills (manual interception, visually guided locomotion, and depth judgment).

Results: Discriminant analysis revealed that athletes and nonathletes can be accurately differentiated based on measured visuomotor skills (91.3% accuracy, p < 0.0001). Near point of convergence, accommodative facility, and dynamic acuity were moderately effective in identifying athletes (71.3%, p = 0.002) and in predicting the three visuomotor skills (all r(2) ≥ 0.096, all p ≤ 0.022). Dominant eye acuity and contrast sensitivity also identified athletes (61.4%, p = 0.021) and contributed to complex visuo-oculomotor abilities (all r(2) ≥ 0.046, all p ≤ 0.039). The correlations among measured abilities were more significant for athletes than nonathletes.

Conclusions: Athletes in interceptive sports are superior to nonathletes in their visuomotor skills. They also have broader access to various visual and complex visuo-oculomotor abilities than nonathletes. This likely allows athletes to more effectively coordinate visual and oculomotor abilities under demanding conditions when some visual cues are degraded. The present findings are consistent with a pyramid of sports vision and suggest a top-down process for athlete screening and training.

Download full-text PDF

Source
http://dx.doi.org/10.1097/OPX.0000000000000599DOI Listing

Publication Analysis

Top Keywords

visuo-oculomotor abilities
20
visuomotor skills
20
complex visuo-oculomotor
12
abilities
9
athletes
9
access visual
8
visual abilities
8
athletes nonathletes
8
athletes interceptive
8
interceptive sports
8

Similar Publications

Introduction: Table tennis players perform visually guided visuomotor responses countlessly. The exposure of the visual system to frequent and long-term motion stimulation has been known to improve perceptual motion detection and discrimination abilities as a learning effect specific to that stimulus, so may also improve visuo-oculomotor performance. We hypothesized and verified that table tennis players have good spatial accuracy of saccades to moving targets.

View Article and Find Full Text PDF

The impact of high- and moderate-intensity exercise on near-point of convergence metrics.

Brain Inj

January 2021

Concussion Research Laboratory, Faculty of Health and Exercise Science, University of British Columbia, Kelowna, BC, Canada.

: Near point of convergence (NPC) assesses the vergence ability of the visuo-oculomotor system; however, little is known regarding: the extent and duration exercise impacts NPC and the between- and within-day reliability of NPC metrics.: An accommodative ruler with a miniature Snellen chart was placed upon the philtrum (upper lip). Participants (n=9) focused upon a 'V' sized 20/20, while the chart was moved at ~1-2 cm/s toward and away from the eyes (twice in each direction).

View Article and Find Full Text PDF

Countermanding behavior has long been seen as a cornerstone of executive control-the human ability to selectively inhibit undesirable responses and change plans. However, scattered evidence implies that stopping behavior is entangled with simpler automatic stimulus-response mechanisms. Here we operationalize this idea by merging the latest conceptualization of saccadic countermanding with a neural network model of visuo-oculomotor behavior that integrates bottom-up and top-down drives.

View Article and Find Full Text PDF

The ability to interact with our environment requires the brain to transform spatially represented sensory signals into temporally encoded motor commands for appropriate control of the relevant effectors. For visually guided eye movements, or saccades, the superior colliculus (SC) is assumed to be the final stage of spatial representation, and instantaneous control of the movement is achieved through a rate code representation in the lower brain stem. We investigated whether SC activity in nonhuman primates (Macaca mulatta, 2 male and 1 female) also uses a dynamic rate code, in addition to the spatial representation.

View Article and Find Full Text PDF

The aim of this study was to assess the visuo-oculomotor skills of gaze orientation in selected sport activities relative to visual demands of the sporting environment. Both temporal and spatial demands of the sporting environment were investigated: The latency and accuracy of horizontal saccades and the gain of the horizontal smooth pursuit of the sporting environment were investigated in 16 fencers, 19 tennis players, 12 gymnasts, 9 swimmers and 18 sedentary participants. For the saccade test, two sequences were tested: In the fixed sequence, participants knew in advance the time interval between each target, as well as the direction and the amplitude of its reappearance; in the Freyss sequence however, the spatial changes of the target (direction and amplitude) were known in advance by participants but the time interval between each target was unknown.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!