Background: The disordered residues on distal loops affect the molecular structural stability and on some occasions have regulatory roles in catalytic reaction. To increase understanding of the influence of distal residue mutation, this study explored the thermostability and enzymatic activity of mannanase Man1312 deletion mutants. The focus was on residues located on the N-terminal region because they are more disordered and changeable. The effects of N-terminal truncation on enzymatic activity and thermal dynamics were investigated by spectrophotometry, circular dichroism and differential scanning calorimetry assays.

Results: The deletion mutants on V3, N7 and Q11 showed a marked increase in stability, while the enzymatic activity was significantly improved when triplet deletion was carried out. Triplet deletion MandVNQ showed around double the stability of its corresponding single-site and double-site deletion mutants. The Tm value of MandVNP was about 8 °C higher than that of Man1312. MandVNP had improved characteristics of Topt by 10 °C, t1/2 by 10 min and catalytic activity by 11% in comparison with Man1312. Analysis of spectra and modeling showed that MandVNQ had increased helix and strand contents.

Conclusion: N-terminal truncation had positive effects on the thermostability and activity of mannanase.

Download full-text PDF

Source
http://dx.doi.org/10.1002/jsfa.7240DOI Listing

Publication Analysis

Top Keywords

n-terminal truncation
12
enzymatic activity
12
deletion mutants
12
mannanase man1312
8
activity mannanase
8
triplet deletion
8
activity
6
deletion
5
n-terminal
4
truncation contributed
4

Similar Publications

The deposition of amyloid-β (Aβ) aggregates and metal ions within senile plaques is a hallmark of Alzheimer's disease (AD). Among the modifications observed in Aβ peptides, -terminal truncation at Phe4, yielding Aβ, is highly prevalent in AD-affected brains and significantly alters Aβ's metal-binding and aggregation profiles. Despite the abundance of Zn(II) in senile plaques, its impact on the aggregation and toxicity of Aβ remains unexplored.

View Article and Find Full Text PDF

A Predicted Helix-Turn-Helix Core Is Critical for Bacteriophage Kil Peptide to Disrupt Cell Division.

Antibiotics (Basel)

January 2025

Department of Microbiology and Molecular Genetics, UTHealth-Houston, Houston, TX 77030, USA.

: FtsZ, a eukaryotic tubulin homolog and an essential component of the bacterial divisome, is the target of numerous antimicrobial compounds as well as proteins and peptides, most of which inhibit FtsZ polymerization dynamics. We previously showed that the Kil peptide from bacteriophage λ inhibits cell division by disrupting FtsZ ring assembly, and this inhibition requires the presence of the essential FtsZ membrane anchor protein ZipA. : To investigate Kil's molecular mechanism further, we employed deletions, truncations, and molecular modeling to identify the minimal residues necessary for its activity.

View Article and Find Full Text PDF

PPARγ is the pharmacological target of thiazolidinediones (TZDs), potent insulin sensitizers that prevent metabolic disease morbidity but are accompanied by side effects such as weight gain, in part due to non-physiological transcriptional agonism. Using high throughput genome engineering, we targeted nonsense mutations to every exon of PPARG, finding an ATG in Exon 2 (chr3:12381414, CCDS2609 c.A403) that functions as an alternative translational start site.

View Article and Find Full Text PDF

Background: Influenza viruses with truncated NS1 proteins show promise as viral vectors and candidates for mucosal universal influenza vaccines. These mutant NS1 viruses, which lack the N-terminal half of the NS1 protein (124 a.a.

View Article and Find Full Text PDF

Sperm-associated antigen 9 (SPAG9) is a member of cancer-testis antigen, having characteristics of a scaffold protein, which is involved in the c-Jun N-terminal kinase JNK signaling pathway, suggesting its key involvement in different physiological processes, such as survival, apoptosis, tumorigenesis, and cell proliferation. We identified two families (A and B) having multisystem features like coarse facial features, albinism, cataracts, skeletal abnormalities, and developmental delay. Whole genome sequencing (WGS) in families A and B revealed a homozygous frameshift variant (c.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!