Objectives: The purpose of this study was to investigate the usefulness of T1W black-blood Cube (BB Cube) and T1W BB Cube fluid-attenuated inversion recovery (BB Cube-FLAIR) sequences for contrast-enhanced brain imaging, by evaluating flow-related artefacts, detectability, and contrast ratio (CR) of intracranial lesions among these sequences and T1W-SE.
Methods: Phantom studies were performed to determine the optimal parameters of BB Cube and BB Cube-FLAIR. A clinical study in 23 patients with intracranial lesions was performed to evaluate the usefulness of these two sequences for the diagnosis of intracranial lesions compared with the conventional 2D T1W-SE sequence.
Results: The phantom study revealed that the optimal parameters for contrast-enhanced T1W imaging were TR/TE = 500 ms/minimum in BB Cube and TR/TE/TI = 600 ms/minimum/300 ms in BB Cube-FLAIR imaging. In the clinical study, the degree of flow-related artefacts was significantly lower in BB Cube and BB Cube-FLAIR than in T1W-SE. Regarding tumour detection, BB Cube showed the best detectability; however, there were no significant differences in CR among the sequences.
Conclusions: At 1.5 T, contrast-enhanced BB Cube was a better imaging sequence for detecting brain lesions than T1W-SE or BB Cube-FLAIR.
Key Points: • Cube is a single-slab 3D FSE imaging sequence. • We applied a black-blood (BB) imaging technique to T1W Cube. • At 1.5 T, contrast-enhanced T1W BB Cube was valuable for detecting brain lesions.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00330-015-3757-5 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!