The two-component signalling networks of Mycobacterium tuberculosis display extensive cross-talk in vitro.

Biochem J

Department of Molecular Reproduction, Development and Genetics, Indian Institute of Science, Bangalore, India Bioengineering Program, Indian Institute of Science, Bangalore, India

Published: July 2015

Two-component systems (TCSs), which contain paired sensor kinase and response regulator proteins, form the primary apparatus for sensing and responding to environmental cues in bacteria. TCSs are thought to be highly specific, displaying minimal cross-talk, primarily due to the co-evolution of the participating proteins. To assess the level of cross-talk between the TCSs of Mycobacterium tuberculosis, we mapped the complete interactome of the M. tuberculosis TCSs using phosphotransfer profiling. Surprisingly, we found extensive cross-talk among the M. tuberculosis TCSs, significantly more than that in the TCSs in Escherichia coli or Caulobacter crescentus, thereby offering an alternate to specificity paradigm in TCS signalling. Nearly half of the interactions we detected were significant novel cross-interactions, unravelling a potentially complex signalling landscape. We classified the TCSs into specific 'one-to-one' and promiscuous 'one-to-many' and 'many-to-one' circuits. Using mathematical modelling, we deduced that the promiscuous signalling observed can explain several currently confounding observations about M. tuberculosis TCSs. Our findings suggest an alternative paradigm of bacterial signalling with significant cross-talk between TCSs yielding potentially complex signalling landscapes.

Download full-text PDF

Source
http://dx.doi.org/10.1042/BJ20150268DOI Listing

Publication Analysis

Top Keywords

tuberculosis tcss
12
tcss
9
mycobacterium tuberculosis
8
extensive cross-talk
8
cross-talk tcss
8
complex signalling
8
tuberculosis
5
cross-talk
5
signalling
5
two-component signalling
4

Similar Publications

Mycobacteria are causative agents of tuberculosis (TB), which is a global health concern. Drug-resistant TB strains are rapidly emerging, thereby necessitating the urgent development of new drugs. Two-component signal transduction systems (TCSs) are signaling pathways involved in the regulation of various bacterial behaviors and responses to environmental stimuli.

View Article and Find Full Text PDF

PhoP-PhoR, one of the 12 two-component systems (TCSs) that empower M. tuberculosis to sense and adapt to diverse environmental conditions, remains essential for virulence, and therefore, represents a major target to develop novel anti-TB therapies. Although both PhoP and PhoR have been structurally characterized, the signal(s) that this TCS responds to remains unknown.

View Article and Find Full Text PDF

Regulatory Intersection of Two-component System and Ser/Thr Protein Kinase Signaling in Mycobacterium tuberculosis.

J Mol Biol

January 2024

Seattle Children's Research Institute, Seattle, WA, United States; Department of Pediatrics, University of Washington, Seattle, WA, United States; Department of Global Health, United States. Electronic address:

Phosphosignaling in bacteria is mediated by two distinct systems, the two-component systems (TCSs) and the protein Ser/Thr/Tyr, or O-phosphorylation systems. These two arms of phosphosignaling are currently thought to be largely independent from one another. We mined a deep Mycobacterium tuberculosis (Mtb) phosphoproteome and identified over 170 O-phosphorylation sites on histidine kinases and response regulators of TCSs, suggesting that the two signaling pathways extensively intersect.

View Article and Find Full Text PDF

Background: Two-component systems (TCSs) assume a pivotal function in Mycobacterium tuberculosis (M.tuberculosis) growth. However, the exact regulatory mechanism of this system needs to be elucidated, and only a few studies have investigated the effect of gene mutations within TCSs on M.

View Article and Find Full Text PDF

Bacterial two-component systems (TCSs) consist of a sensor histidine kinase (HK) that perceives a specific signal, and a cognate response regulator (RR) that modulates the expression of target genes. Positive autoregulation improves TCS sensitivity to stimuli, but may trigger disproportionately large responses to weak signals, compromising bacterial fitness. Here, we combine experiments and mathematical modelling to reveal a general design that prevents such disproportionate responses: phosphorylated HKs (HK~Ps) can be sequestered by non-cognate RRs.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!