A reliable assessment of the pro-arrhythmic potential for drugs in the development phase remains elusive. Rabbits and dogs are commonly used to create models of pro-arrhythmia, but the differences between them with respect to repolarizing potassium currents are poorly understood. We investigated the incidence of drug-induced torsades de pointes (TdP) and measured conventional ECG parameters and the short-term variability of the QT interval (STVQT) following combined pharmacological inhibition of IK1+IKs and IK1+IKr in conscious dogs and anesthetized rabbits. A high incidence of TdP was observed following the combined inhibition of IK1+IKs in dogs (67% vs. 14% in rabbits). Rabbits exhibited higher TdP incidence after inhibition of IK1+IKr (72% vs. 14% in dogs). Increased TdP incidence was associated with significantly larger STVQT in both models. The relatively different roles of IK1 and IKs in dog and rabbit repolarization reserve should be taken into account when extrapolating the results from animal models of pro-arrhythmia to humans. A stronger repolarization reserve in dogs (likely due to stronger IK1 and IKs), and the more human-like susceptibility to arrhythmia of rabbits argues for the preferred use of rabbits in the evaluation of adverse pro-arrhythmic effects.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1139/cjpp-2014-0514 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!