AI Article Synopsis

Article Abstract

A wet-chemical, facile strategy is proposed for forming three-dimensional intra-structured nanocomposites to facilitate the development of high performance anodes for lithium ion batteries. The nanocomposites are composed of cobalt oxide nanoparticles, reduced graphene oxides, and Ag nanoparticles, and all the constituent materials are incorporated homogenously in a layer-by-layer structured geometry by a simple sono-chemical hybridizing process in a single, one-pot batch. Herein, it is revealed that the homogenously intra-stacked oxide, carbon, and metallic phases play critical roles in determining electrochemical performance (i.e. high capacity, rate capability, and cycling stability) of nanocomposite-based anodes, owing to the characteristic chemical/physical nature of constituent materials welded by partial melting of the metallic nanoparticles. In particular, by virtue of a characteristic role of a nano-Ag phase in suppressing the irreversible capacity, a critical drawback for metal oxide-based anodes, excellent capacities are demonstrated (983 and 770 mA h g(-1) at current densities of 100 and 2000 mA g(-1), respectively).

Download full-text PDF

Source
http://dx.doi.org/10.1039/c5nr01599eDOI Listing

Publication Analysis

Top Keywords

constituent materials
8
intra-stacked coo/carbon
4
coo/carbon nanocomposites
4
nanocomposites welded
4
nanoparticles
4
welded nanoparticles
4
nanoparticles high-capacity
4
high-capacity reversible
4
reversible lithium
4
lithium storage
4

Similar Publications

Hydroxyapatite (HA) is an important constituent of natural bone. The properties of HA can be enhanced with the help of various ionic substitutions in the crystal lattice of HA. Iron (Fe) is a vital element present in bones and teeth.

View Article and Find Full Text PDF

(L.) Jacq. has anti-inflammatory, analgesic, haemostatic and antioxidant effects, but its pharmacological components are still unclear.

View Article and Find Full Text PDF

Characterization of Fatigue Properties of Fiber-Reinforced Polymer Composites Based on a Multiscale Approach.

Polymers (Basel)

January 2025

Department of Mechanical Engineering, Hanyang University, 222 Wangsimri-ro, Seongdong-gu, Seoul 04763, Republic of Korea.

This study presents a methodology for characterizing the constituent properties of composite materials by back-calculating from the laminate behavior under fatigue loading. Composite materials consist of fiber reinforcements and a polymer matrix, with the fatigue performance of the laminate governed by the interaction between these constituents. Due to the challenges in directly measuring the properties of individual fibers and the polymer matrix, a reverse-engineering approach was employed.

View Article and Find Full Text PDF

Recycling end-of-life wind turbines poses a significant challenge due to the increasing number of turbines going out of use. After many years of operation, turbines lose their functional properties, generating a substantial amount of composite waste that requires efficient and environmentally friendly processing methods. Wind turbine blades, in particular, are a problematic component in the recycling process due to their complex material composition.

View Article and Find Full Text PDF

Bilayer TiO/Mo-BiVO Photoelectrocatalysts for Ibuprofen Degradation.

Materials (Basel)

January 2025

Section of Condensed Matter Physics, Department of Physics, National and Kapodistrian University of Athens, University Campus, 15784 Athens, Greece.

Heterojunction formation between BiVO nanomaterials and benchmark semiconductor photocatalysts has been keenly pursued as a promising approach to improve charge transport and charge separation via interfacial electron transfer for the photoelectrocatalytic degradation of recalcitrant pharmaceutical pollutants. In this work, a heterostructured TiO/Mo-BiVO bilayer photoanode was fabricated by the deposition of a mesoporous TiO overlayer using the benchmark P25 titania catalyst on top of Mo-doped BiVO inverse opal films as the supporting layer, which intrinsically absorbs visible light below 490 nm, while offering improved charge transport. A porous P25/Mo-BiVO bilayer structure was produced from the densification of the inverse opal underlayer after post-thermal annealing, which was evaluated on photocurrent generation in aqueous electrolyte and the photoelectrocatalytic degradation of the refractory anti-inflammatory drug ibuprofen under back-side illumination by visible and UV-Vis light.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!