Trapping and assembling of particles and live cells on large-scale random gold nano-island substrates.

Sci Rep

Centre for Advanced Research in Photonics, Department of Electronic Engineering, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong SAR, China.

Published: April 2015

We experimentally demonstrated the use of random plasmonic nano-islands for optical trapping and assembling of particles and live cells into highly organized pattern with low power density. The observed trapping effect is attributed to the net contribution due to near-field optical trapping force and long-range thermophoretic force, which overcomes the axial convective drag force, while the lateral convection pushes the target objects into the trapping zone. Our work provides a simple platform for on-chip optical manipulation of nano- and micro-sized objects, and may find applications in physical and life sciences.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5386207PMC
http://dx.doi.org/10.1038/srep09978DOI Listing

Publication Analysis

Top Keywords

trapping assembling
8
assembling particles
8
particles live
8
live cells
8
optical trapping
8
trapping
5
cells large-scale
4
large-scale random
4
random gold
4
gold nano-island
4

Similar Publications

The prediction of gelation is an important target, yet current models do not predict any post-gel properties. Gels can be formed through the self-assembly of many molecules, but close analogs often do not form gels. There has been success using a number of computational approaches to understand and predict gelation from molecular structures.

View Article and Find Full Text PDF

An integrative taxonomic approach reveals two putatively novel species of phlebotomine sand fly (Diptera: Psychodidae) in Thailand.

Parasit Vectors

January 2025

Center of Excellence in Veterinary Parasitology, Department of Pathology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, 10330, Thailand.

Background: The subfamily Phlebotominae comprises 1028 species of sand fly, of which only 90 are recognized as vectors of pathogenic agents such as Trypanosoma, Leishmania, and Bartonella. In Thailand, leishmaniasis-a sand fly-borne disease-is currently endemic, with 36 documented sand fly species. However, many cryptic species likely remain unidentified.

View Article and Find Full Text PDF

Self-assembly by anti-repellent structures for programming particles with momentum.

Nat Commun

December 2024

Department of Electronics and Information Convergence Engineering, Kyung Hee University, Yongin-si, Republic of Korea.

Self-assembled configurations are versatile for applications in which liquid-mediated phenomena are employed to ensure that static or mild physical interactions between assembling blocks take advantage of local energy minima. For granular materials, however, a particle's momentum in air leads to random collisions and the formation of disordered phases, eventually producing jammed configurations when densely packed. Therefore, unlike fluidic self-assembly, the self-assembly of dry particles typically lacks programmability based on density and ordering symmetry and has thus been limited in applications.

View Article and Find Full Text PDF

Osteosarcoma-targeting Pt prodrug amphiphile for enhanced chemo-immunotherapy via Ca trapping.

Acta Biomater

December 2024

Department of Pharmaceutics, School of Pharmacy, Qingdao University, Qingdao 266021, China. Electronic address:

Platinum (Pt)-based anticancer agents exhibit a lack of selectivity in the treatment of osteosarcoma, resulting in significant toxicity. Furthermore, immune surveillance withinthe tumor microenvironment impedes the uptake of platinum drugs by osteosarcoma cells. To overcome these challenges, an oxaliplatin-based Pt prodrug amphiphile (Lipo-OXA-ALN) was designed and synthesized by incorporatingan osteosarcoma-targeting alendronate (ALN) alongside a lipid tail.

View Article and Find Full Text PDF

Efficient Output and Stability Triboelectric Materials Enabled by High Deep Trap Density.

Nano Lett

January 2025

Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, School of Light Industry and Food Engineering, Guangxi University, Nanning, 530004, China.

With the increasing global focus on sustainable materials, paper is favored for its biodegradability and low cost. Their integration with triboelectric nanogenerators (TENGs) establishes broad prospects for self-powered, paper-based triboelectric materials. However, these materials inherently lack efficient charge storage structures, leading to rapid charge dissipation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!