The coactivator PGC-1α is the key regulator of mitochondrial biogenesis in skeletal muscle. Skeletal muscle expresses several PGC-1α isoforms. This review covers the functional role of PGC-1α isoforms and the regulation of their exercise-associated expression in skeletal muscle. The patterns of PGC-1α mRNA expression may markedly differ at rest and after muscle activity. Different signaling pathways are activated by different physiological stimuli, which regulate the expression of the PGC-1α gene from the canonical and alternative promoters: expression from a canonical (proximal) promoter is regulated by activation of the AMPK; expression from an alternative promoter, via a β2-adrenergic receptor. All transcripts from both promoters are subject to alternative splicing. As a result, truncated isoforms that possess different properties are translated: truncated isoforms are more stable and predominantly activate angiogenesis, whereas full-length isoforms manly regulate mitochondrial biogenesis. The existence of several isoforms partially explains the broad-spectrum function of this protein and allows the organism to adapt to different physiological stimuli. Regulation of the PGC-1α gene expression by different signaling pathways provides ample opportunity for pharmacological influence on the expression of this gene. Those opportunities might be important for the treatment and prevention of various diseases, such as metabolic syndrome and diabetes mellitus. Elucidation of the regulatory mechanisms of the PGC-1α gene expression and their functional role may provide an opportunity to control the expression of different isoforms through exercise and/or pharmacological intervention.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4410395 | PMC |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!