Heat shock protein 70 (Hsp70) is frequently overexpressed in tumor cells. An unusual cell surface localization could be demonstrated on a large variety of solid tumors including lung, colorectal, breast, squamous cell carcinomas of the head and neck, prostate and pancreatic carcinomas, glioblastomas, sarcomas and hematological malignancies, but not on corresponding normal tissues. A membrane (m)Hsp70-positive phenotype can be determined either directly on single cell suspensions of tumor biopsies by flow cytometry using cmHsp70.1 monoclonal antibody or indirectly in the serum of patients using a novel lipHsp70 ELISA. A mHsp70-positive tumor phenotype has been associated with highly aggressive tumors, causing invasion and metastases and resistance to cell death. However, natural killer (NK), but not T cells were found to kill mHsp70-positive tumor cells after activation with a naturally occurring Hsp70 peptide (TKD) plus low dose IL-2 (TKD/IL-2). Safety and tolerability of ex vivo TKD/IL-2 stimulated, autologous NK cells has been demonstrated in patients with metastasized colorectal and non-small cell lung cancer (NSCLC) in a phase I clinical trial. Based on promising clinical results of the previous study, a phase II randomized clinical study was initiated in 2014. The primary objective of this multicenter proof-of-concept trial is to examine whether an adjuvant treatment of NSCLC patients after platinum-based radiochemotherapy (RCTx) with TKD/IL-2 activated, autologous NK cells is clinically effective. As a mHsp70-positive tumor phenotype is associated with poor clinical outcome only mHsp70-positive tumor patients will be recruited into the trial. The primary endpoint of this study will be the comparison of the progression-free survival of patients treated with ex vivo activated NK cells compared to patients who were treated with RCTx alone. As secondary endpoints overall survival, toxicity, quality-of-life, and biological responses will be determined in both study groups.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4397864 | PMC |
http://dx.doi.org/10.3389/fimmu.2015.00162 | DOI Listing |
Int J Mol Sci
October 2024
Radiation Immuno-Oncology, TranslaTUM-Central Institute for Translational Cancer Research, TUM University Hospital, School of Medicine and Health, Technical University Munich, Ismaningerstr. 21, 81675 Munich, Germany.
Stress-inducible heat shock protein 70 (Hsp70), which functions as a molecular chaperone and is frequently overexpressed in different cancer cell types, is present on the cell surface of tumor cells and is actively released into the circulation in free and extracellular lipid vesicle-associated forms. Since the exact pathomechanism of endometriosis has not yet been elucidated (although it has been associated with the development of endometrial and ovarian cancer), we asked whether extracellular Hsp70 and circulating endometriotic cells (CECs) reflect the presence and development of endometriosis. Therefore, circulating levels of free and lipid microvesicle-associated Hsp70 were measured using the Hsp70-exo ELISA, and the presence of circulating CECs in the peripheral blood of patients with endometriosis was determined using membrane Hsp70 (mHsp70) and EpCAM monoclonal antibody (mAb)-based bead isolation approaches.
View Article and Find Full Text PDFMol Immunol
October 2024
Radiation Immuno-Oncology Group, TranslaTUM - Central Institute for Translational Cancer Research and Department of Radiation Oncology, Klinikum rechts der Isar, TUM School of Medicine and Health, Munich, Germany. Electronic address:
Background: Cannabidiol (CBD), the major non-psychoactive component of cannabis, exhibits anti-inflammatory properties, but less is known about the immunomodulatory potential of CBD on activated natural killer (NK) cells and/or their targets. Many tumor cells present heat shock protein 70 (Hsp70) on their cell surface in a tumor-specific manner and although a membrane Hsp70 (mHsp70) positive phenotype serves as a target for Hsp70-activated NK cells, a high mHsp70 expression is associated with tumor aggressiveness. This study investigated the immuno-modulatory potential of CBD on NK cells stimulated with TKD Hsp70 peptide and IL-2 (TKD+IL-2) and also on HCT116 p53wt and HCT116 p53-/- colorectal cancer cells exhibiting high and low basal levels of mHsp70 expression.
View Article and Find Full Text PDFAdv Sci (Weinh)
April 2024
Central Institute for Translational Cancer Research (TranslaTUM), School of Medicine, Technische Universität München, 81675, Munich, Germany.
Natural killer (NK) cells are central components of the innate immunity system against cancers. Since tumor cells have evolved a series of mechanisms to escape from NK cells, developing methods for increasing the NK cell antitumor activity is of utmost importance. It is previously shown that an ex vivo stimulation of patient-derived NK cells with interleukin (IL)-2 and Hsp70-derived peptide TKD (TKDNNLLGRFELSG, aa450-461) results in a significant upregulation of activating receptors including CD94 and CD69 which triggers exhausted NK cells to target and kill malignant solid tumors expressing membrane Hsp70 (mHsp70).
View Article and Find Full Text PDFBiomedicines
August 2023
Center for Translational Cancer Research TU München (TranslaTUM), Klinikum rechts der Isar, Technical University of Munich (TUM), 81675 Munich, Germany.
Heat shock protein 70 (Hsp70) is frequently overexpressed in many different tumor types. However, Hsp70 has also been shown to be selectively presented on the plasma membrane of tumor cells, but not normal cells, and this membrane form of Hsp70 (mHsp70) could be considered a universal tumor biomarker. Since viable, mHsp70-positive tumor cells actively release Hsp70 in lipid micro-vesicles, we investigated the utility of Hsp70 in circulation as a universal tumor biomarker and its potential as an early predictive marker of therapeutic failure.
View Article and Find Full Text PDFCancers (Basel)
February 2023
Central Institute for Translational Cancer Research (TranslaTUM), Radiation Immuno Oncology Group, Klinikum Rechts der Isar der Technischen Universität München, 81675 Munich, Germany.
Triple-negative breast cancer (TNBC) a highly aggressive tumor entity with an unfavorable prognosis, is treated by multimodal therapies, including ionizing radiation (IR). Radiation-resistant tumor cells, as well as induced normal tissue toxicity, contribute to the poor clinical outcome of the disease. In this study, we investigated the potential of novel hybrid iron oxide (FeO)-gold (Au) nanoparticles (FeAuNPs) functionalized with the heat shock protein 70 (Hsp70) tumor-penetrating peptide (TPP) and coupled via a PEG4 linker (TPP-PEG4-FeAuNPs) to improve tumor targeting and uptake of NPs and to break radioresistance in TNBC cell lines 4T1 and MDA-MB-231.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!