Antigen emergence rapidly stimulates T cells, which leads to changes in cytokine production, cell proliferation, and differentiation. Some of the key molecules involved in these events, such as TGF-β1 and NOTCH1, are synthesized initially as inactive precursors and are proteolytically activated during T cell activation. PCSKs regulate proprotein maturation by catalyzing the proteolytic cleavage of their substrates. The prototype PCSK FURIN is induced upon TCR activation, and its expression in T cells is critical for the maintenance of peripheral immune tolerance. In this study, we tested the hypothesis that FURIN regulates T cell activation. Our data demonstrate that IL-2 is increased initially in FURIN-deficient mouse CD4(+) T cells, but the TCR-induced IL-2 mRNA expression is not sustained in the absence of FURIN. Accordingly, the inhibition of FURIN in human Jurkat T cell lines also results in a decrease in IL-2 production, whereas the overexpression of WT FURIN is associated with elevated IL-2 levels. In Jurkat cells, FURIN is dispensable for immediate TCR signaling steps, such as ERK, ZAP70, or LAT phosphorylation. However, with the use of gene reporter assays, we demonstrate that FURIN regulates the AP-1, NFAT, and NF-κB transcription factors. Finally, by performing a transcription factor-binding site enrichment analysis on FURIN-dependent transcriptomes, we identify the FURIN-regulated transcription factors in mouse CD4(+) T cell subsets. Collectively, our work confirms the hypothesis that the TCR-regulated protease FURIN plays an important role in T cell activation and that it can specifically modulate TCR-activated transactivation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1189/jlb.2A0514-257RR | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!