The central nervous system is known to play important roles in the regulation of renal sodium excretion. The present study was designed to reveal the interrelationship between cholinergic pathway in the magnocellular paraventricular nucleus (PVN) and the natriuresis induced by brain cholinergic stimuli. The results indicated that urinary sodium excretion was significantly increased at 40 min after intracerebroventricular (ICV) injection of carbachol (CBC). Immunohistochemical studies showed that CBC increased choline acetyltransferase-immunoreactivity (ChAT-IR) in the magnocellular PVN and renal proximal convoluted tubule (PCT), respectively. After pretreatment with atropine, urinary sodium excretion was significantly reduced, and carbachol-increased ChAT-IR in the magnocellular PVN and PCT was also significantly decreased. These results suggested that brain cholinergic stimuli induced the natriuresis and increased the activity of cholinergic neurons in the magnocellular PVN and cholinergic system in the PCT. The blockade of muscarinic receptor completely abolished the natriuresis and partially inhibited carbachol-exerted stimulatory effects in the magnocellular PVN and PCT. To summarize, brain cholinergic pathway and peripheral cholinergic system in kidney were found to contribute to the natriuresis following brain cholinergic stimulation. Our findings revealed novel evidence that PVN was involved in the natriuresis via humoral mechanisms.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.4149/gpb_2014042 | DOI Listing |
Alzheimers Res Ther
January 2025
Department of Neurology, University Medical Center Rostock, 18147, Rostock, Germany.
Background: Degeneration of the basal forebrain cholinergic system is a hallmark feature shared by Alzheimer's disease (AD) and Lewy body disease (LBD) whereas hippocampus atrophy is more specifically related to AD. We aimed to investigate the relationship between basal forebrain and hippocampus atrophy, cognitive decline, and neuropathology in a large autopsy sample.
Methods: Data were obtained from the National Alzheimer's Coordinating Center (NACC).
J Prev Alzheimers Dis
February 2025
Department of Psychosomatic Medicine, University Medicine Rostock, Rostock, Germany; Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE), Greifswald, Rostock, Germany.
Background: Imaging studies showed early atrophy of the cholinergic basal forebrain in prodromal sporadic Alzheimer's disease and reduced posterior basal forebrain functional connectivity in amyloid positive individuals with subjective cognitive decline. Similar investigations in familial cases of Alzheimer's disease are still lacking.
Objectives: To test whether presenilin-1 E280A mutation carriers have reduced basal forebrain functional connectivity and whether this is linked to amyloid pathology.
Prog Neurobiol
January 2025
Department of Biomedicine, University of Basel, Klingelbergstrasse 50, 4056 Basel, Switzerland. Electronic address:
The brain faces the challenging task of preserving a consistent portrayal of the external world in the face of disruptive sensory inputs. What alterations occur in sensory representation amidst noise, and how does brain activity adapt to it? Although it has previously been shown that background white noise (WN) decreases responses to salient sounds, a mechanistic understanding of the brain processes responsible for such changes is lacking. We investigated the effect of background WN on neuronal spiking activity, membrane potential, and network oscillations in the mouse central auditory system.
View Article and Find Full Text PDFMolecules
January 2025
Chair and Department of Biochemistry and Pharmacogenomics, Medical University of Warsaw, 1 Banacha Str., 02-097 Warsaw, Poland.
Vitamin B (thiamine) plays an important role in human metabolism. It is essential for the proper growth and development of the body and has a positive effect on the functioning of the digestive, cardiovascular, and nervous systems. Additionally, it stimulates the brain and improves the psycho-emotional state.
View Article and Find Full Text PDFMolecules
January 2025
Department of Pharmacology and Toxicology, College of Pharmacy, Qassim University, Buraydah 51452, Saudi Arabia.
Dual inhibition of cyclooxygenase-2 (COX-2) and lipoxygenase (LOX) is a recognized strategy for enhanced anti-inflammatory effects in small molecules, offering potential therapeutic benefits for individuals at risk of dementia, particularly those with neurodegenerative diseases, common cancers, and diabetes type. Alzheimer's disease (AD) is the most common cause of dementia, and the inhibition of acetylcholinesterase (AChE) is a key approach in treating AD. Meanwhile, Caspase-3 catalyzes early events in apoptosis, contributing to neurodegeneration and subsequently AD.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!