The potential involvement of intestinal microsomal cytochrome P450 (P450) enzymes in defending against colon inflammation and injury was studied in mice treated with dextran sulfate sodium (DSS) to induce colitis. Wild-type (WT) mice and mice with intestinal epithelium (IE)-specific deletion of the P450 reductase gene (IE-Cpr-null) were compared. IE-Cpr-null mice have little microsomal P450 activity in IE cells. DSS treatment (2.5% in drinking water for 6 days) caused more severe colon inflammation, as evidenced by the presence of higher levels of myeloperoxidase and proinflammatory cytokines [tumor necrosis factor-α, interleukin (IL)-6, and IL-1β], and greater weight loss, colonic tissue damage, and colon shortening, in IE-Cpr-null mice than in WT mice. The IE-Cpr-null mice were deficient in colonic corticosterone (CC) synthesis, as indicated by the inability of ex vivo cultured colonic tissues from DSS-treated IE-Cpr-null mice (in contrast to DSS-treated WT mice) to show increased CC production, compared with vehicle-treated mice, and by the ability of added deoxycorticosterone (DOC), a precursor of CC biosynthesis via mitochondrial CYP11B1, to restore ex vivo CC production by colonic tissues from DSS-treated null mice. Intriguingly, null (but not WT) mice failed to show increased serum CC levels following DSS treatment. Nevertheless, cotreatment of DSS-exposed mice with DOC, which did not restore DSS-induced increase in serum CC, abolished the hypersensitivity of IE-Cpr-null mice to DSS-induced colon injury. Taken together, our results strongly support the notion that microsomal P450 enzymes in the intestine play an important role in protecting colon epithelium from DSS-induced inflammation and injury, possibly through increased local CC synthesis in response to DSS challenge.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4468430 | PMC |
http://dx.doi.org/10.1124/jpet.115.223263 | DOI Listing |
J Pharmacol Exp Ther
July 2015
Wadsworth Center, New York State Department of Health, and School of Public Health, University at Albany, Albany, New York (Y.Z., F.X., L.D., X.F., X.D., Q.-Y.Z.); and College of Nanoscale Science and Engineering, SUNY Polytechnic Institute, Albany, New York (X.D.)
The potential involvement of intestinal microsomal cytochrome P450 (P450) enzymes in defending against colon inflammation and injury was studied in mice treated with dextran sulfate sodium (DSS) to induce colitis. Wild-type (WT) mice and mice with intestinal epithelium (IE)-specific deletion of the P450 reductase gene (IE-Cpr-null) were compared. IE-Cpr-null mice have little microsomal P450 activity in IE cells.
View Article and Find Full Text PDFSci Rep
July 2014
1] Division of Infectious Diseases, Wadsworth Center, New York State Department of Health, Albany, NY [2] Biomedical Sciences, University at Albany, Albany, NY 12208.
Cytochrome P450 (P450) enzymes are a superfamily of heme-containing enzymes involved in the metabolism of various endogenous compounds, including retinoids, glucocorticoids, and eicosanoids, that are postulated to participate in the maintenance and/or development of inflammatory and immune reactions in the intestinal mucosa. To investigate the role of P450 enzymes in intestinal inflammation and immunity, we took advantage of IE-Cpr-null mice, which are deficient in intestinal epithelium of NADPH-cytochrome P450 reductase (CPR), the obligate redox partner of all microsomal P450 enzymes. We report that IE-Cpr-null mice, following an acute toxin challenge, had higher levels of pro-inflammatory chemokines and increased tissue damage compared to wild-type mice.
View Article and Find Full Text PDFDrug Metab Dispos
February 2013
Laboratory of Molecular, State University of New York at Albany, NY, USA.
The study was originally designed to test the hypothesis that the compensatory increase in intestinal P450 (cytochrome P450) expression in the intestinal epithelium-specific P450 reductase (CPR) knockout (IE-Cpr-null) mice was attributable to decreased metabolism of putative P450 inducers present in the diet. Thus, we determined the impact of a dietary change from regular rodent chow to a synthetic diet devoid of phytochemicals on the expression of P450 enzymes in the small intestine (SI) and liver of wild-type (WT) and IE-Cpr-null mice. The dietary change diminished expression of CYP1A, 2B, 2C, and 3A in SI and CYP2B, 2C, and 3A in liver of both WT and IE-Cpr-null mice.
View Article and Find Full Text PDFJ Pharmacol Exp Ther
November 2012
Wadsworth Center, New York State Department of Health, Empire State Plaza, Box 509, Albany, NY 12201-0509, USA.
The aim of this study was to determine the role of small intestinal (SI) cytochrome P450 (P450) enzymes in the metabolic activation of diclofenac (DCF), a widely used nonsteroidal anti-inflammatory drug, and DCF-induced intestinal toxicity. DCF induces intestinal ulcers in humans and mice, but the underlying mechanisms, including the necessity for drug bioactivation in the target tissues and the sources and identities of reactive intermediates, are not fully understood. We found that the number of DCF-induced (at 50 mg/kg p.
View Article and Find Full Text PDFJ Biol Chem
May 2012
Wadsworth Center, New York State Department of Health, and School of Public Health, State University of New York, Albany, New York 12201-0509. Electronic address:
NADPH-cytochrome P450 reductase (POR) is essential for the functioning of microsomal cytochrome P450 (P450) monooxygenases and heme oxygenases. The biological roles of the POR-dependent enzymes in the intestine have not been defined, despite the wealth of knowledge on the biochemical properties of the various oxygenases. In this study, cDNA microarray analysis revealed significant changes in gene expression in enterocytes isolated from the small intestine of intestinal epithelium-specific Por knock-out (named IE-Cpr-null) mice compared with that observed in wild-type (WT) littermates.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!