Timely accurate diagnosis of Shiga toxin-producing Escherichia coli (STEC) infections is important. We evaluated a laboratory-developed real-time PCR (LD-PCR) assay targeting stx1, stx2, and rfbEO157 with 2,386 qualifying stool samples submitted to the microbiology laboratory of a tertiary care pediatric center between July 2011 and December 2013. Broth cultures of PCR-positive samples were tested for Shiga toxins by enzyme immunoassay (EIA) (ImmunoCard STAT! enterohemorrhagic E. coli [EHEC]; Meridian Bioscience) and cultured in attempts to recover both O157 and non-O157 STEC. E. coli O157 and non-O157 STEC were detected in 35 and 18 cases, respectively. Hemolytic uremic syndrome (HUS) occurred in 12 patients (10 infected with STEC O157, one infected with STEC O125ac, and one with PCR evidence of STEC but no resulting isolate). Among the 59 PCR-positive STEC specimens from 53 patients, only 29 (54.7%) of the associated specimens were toxin positive by EIA. LD-PCR differentiated STEC O157 from non-O157 using rfbEO157, and LD-PCR results prompted successful recovery of E. coli O157 (n = 25) and non-O157 STEC (n = 8) isolates, although the primary cultures and toxin assays were frequently negative. A rapid "mega"-multiplex PCR (FilmArray gastrointestinal panel; BioFire Diagnostics) was used retrospectively, and results correlated with LD-PCR findings in 25 (89%) of the 28 sorbitol-MacConkey agar culture-negative STEC cases. These findings demonstrate that PCR is more sensitive than EIA and/or culture and distinguishes between O157 and non-O157 STEC in clinical samples and that E. coli O157:H7 remains the predominant cause of HUS in our institution. PCR is highly recommended for rapid diagnosis of pediatric STEC infections.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4473226PMC
http://dx.doi.org/10.1128/JCM.00115-15DOI Listing

Publication Analysis

Top Keywords

o157 non-o157
20
non-o157 stec
16
stec
12
real-time pcr
8
shiga toxin-producing
8
toxin-producing escherichia
8
escherichia coli
8
clinical samples
8
stec infections
8
coli o157
8

Similar Publications

Epidemiology of Shiga toxin-producing other than serotype O157:H7 in England, 2016-2023.

J Med Microbiol

January 2025

Field Service - South East and London, UK Health Security Agency, London, UK.

Shiga toxin-producing (STEC) infections are of public health concern as STEC can cause large national foodborne outbreaks of severe gastrointestinal disease, particularly in the young and elderly. In recent years, the implementation of PCR by diagnostic microbiology laboratories has improved the detection of STEC, and there has been an increase in notifications of cases of non-O157 STEC. However, the extent this increase in caseload can be attributed to the improved detection by PCR, or a true increase in non-O157 STEC infections, is unknown.

View Article and Find Full Text PDF

Shiga toxin-producing (STEC) refers to a group of bacteria that can cause infections, which are common worldwide and pose a serious public health problem, as they can lead to conditions such as hemorrhagic colitis and hemolytic uremic syndrome (HUS). HUS is a disease characterized by microangiopathic hemolytic anemia, thrombocytopenia, and renal failure. Determination of serogroups and toxin profiles of STEC is important for estimating their disease-causing potential and predicting epidemiological changes.

View Article and Find Full Text PDF

Whole genome sequencing analysis of non-O157 Shiga toxin-producing in milk in Kwara State, Nigeria.

Iran J Vet Res

January 2024

Department of Veterinary Public Health and Preventive Medicine, Faculty of Veterinary Medicine, University of Ibadan, Ibadan, Nigeria.

Article Synopsis
  • - Milk contamination, particularly from Shiga toxin-producing non-O157 STEC strains, poses significant public health risks, especially in areas like Kwara State, Nigeria, where data on this issue is limited.
  • - The study examined 18 non-O157 STEC isolates from 1,225 milk samples, revealing four novel sequence types and five serotypes that carry various virulence and resistance factors.
  • - Findings of this research underline the need for better hygiene in milk handling and inform public health policies to enhance food safety standards in the region.
View Article and Find Full Text PDF

Characterization of non-O157 enterohemorrhagic Escherichia coli isolated from different sources in Egypt.

BMC Microbiol

November 2024

Microbiology and Immunology Department, Faculty of Pharmacy, Mansoura University, Mansoura, 35516, Egypt.

Article Synopsis
  • Enterohemorrhagic Escherichia coli (EHEC) O157 is known for causing serious illnesses like hemorrhagic colitis and hemolytic uremic syndrome, but non-O157 strains are also emerging as significant pathogens.
  • In a study conducted in Egypt, 335 samples were collected, revealing that nearly half were EHEC, with the O111, O91, O26, and O55 serotypes being the most common across various sources like stool, urine, and food products.
  • The analysis of virulence genes showed high prevalence of genes such as sheA, stx2, and eae, and genetic testing revealed diverse strains with significant similarities, highlighting the complexity and potential
View Article and Find Full Text PDF

Genotypic analysis of Shiga toxin-producing clonal complex 17 in England and Wales, 2014-2022.

J Med Microbiol

November 2024

Gastrointestinal Bacteria Reference Unit, UK Health Security Agency, Colindale, London, UK.

Shiga toxin-producing (STEC) are zoonotic, gastrointestinal pathogens characterized by the presence of the Shiga toxin () gene. Historically, STEC O157:H7 clonal complex (CC) 11 has been the most clinically significant serotype; however, recently there has been an increase in non-O157 STEC serotypes, including STEC O103:H2 belonging to CC17. STEC O103:H2 is an STEC serotype frequently isolated in England, although little is known about the epidemiology, clinical significance, associated public health burden or evolutionary context of this strain.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!