Prototypic and arkypallidal neurons in the dopamine-intact external globus pallidus.

J Neurosci

Medical Research Council Brain Network Dynamics Unit, Department of Pharmacology, University of Oxford, Oxford OX1 3QT, United Kingdom, and Oxford Parkinson's Disease Centre, University of Oxford, Oxford OX1 3QX, United Kingdom

Published: April 2015

Studies in dopamine-depleted rats indicate that the external globus pallidus (GPe) contains two main types of GABAergic projection cell; so-called "prototypic" and "arkypallidal" neurons. Here, we used correlative anatomical and electrophysiological approaches in rats to determine whether and how this dichotomous organization applies to the dopamine-intact GPe. Prototypic neurons coexpressed the transcription factors Nkx2-1 and Lhx6, comprised approximately two-thirds of all GPe neurons, and were the major GPe cell type innervating the subthalamic nucleus (STN). In contrast, arkypallidal neurons expressed the transcription factor FoxP2, constituted just over one-fourth of GPe neurons, and innervated the striatum but not STN. In anesthetized dopamine-intact rats, molecularly identified prototypic neurons fired at relatively high rates and with high regularity, regardless of brain state (slow-wave activity or spontaneous activation). On average, arkypallidal neurons fired at lower rates and regularities than prototypic neurons, and the two cell types could be further distinguished by the temporal coupling of their firing to ongoing cortical oscillations. Complementing the activity differences observed in vivo, the autonomous firing of identified arkypallidal neurons in vitro was slower and more variable than that of prototypic neurons, which tallied with arkypallidal neurons displaying lower amplitudes of a "persistent" sodium current important for such pacemaking. Arkypallidal neurons also exhibited weaker driven and rebound firing compared with prototypic neurons. In conclusion, our data support the concept that a dichotomous functional organization, as actioned by arkypallidal and prototypic neurons with specialized molecular, structural, and physiological properties, is fundamental to the operations of the dopamine-intact GPe.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4412890PMC
http://dx.doi.org/10.1523/JNEUROSCI.4662-14.2015DOI Listing

Publication Analysis

Top Keywords

arkypallidal neurons
24
prototypic neurons
24
neurons
15
external globus
8
globus pallidus
8
dopamine-intact gpe
8
gpe neurons
8
neurons fired
8
prototypic
7
gpe
6

Similar Publications

Reactive inhibitory control is crucial for survival. Traditionally, this control in mammals was attributed solely to the hyperdirect pathway, with cortical control signals flowing unidirectionally from the subthalamic nucleus (STN) to basal ganglia output regions. Yet recent findings have put this model into question, suggesting that the STN is assisted in stopping actions through ascending control signals to the striatum mediated by the external globus pallidus (GPe).

View Article and Find Full Text PDF

Striatal projection neurons, which are classified into two groups-direct and indirect pathway neurons, play a pivotal role in our understanding of the brain's functionality. Conventional models propose that these two pathways operate independently and have contrasting functions, akin to an "accelerator" and "brake" in a vehicle. This analogy further elucidates how the depletion of dopamine neurons in Parkinson's disease can result in bradykinesia.

View Article and Find Full Text PDF

Reactive inhibitory control is crucial for survival. Traditionally, this control in mammals was attributed solely to the hyperdirect pathway, with cortical control signals flowing unidirectionally from the subthalamic nucleus (STN) to basal ganglia output regions. Yet recent findings have put this model into question, suggesting that the STN is assisted in stopping actions through ascending control signals to the striatum mediated by the external globus pallidus (GPe).

View Article and Find Full Text PDF

Arkypallidal neurons in basal ganglia circuits: Unveiling novel pallidostriatal loops?

Curr Opin Neurobiol

February 2024

Université de Bordeaux, CNRS, Institut des Maladies Neurodégénératives, F-33000 Bordeaux, France. Electronic address:

Just over a decade ago, a novel GABAergic input originating from a subpopulation of external globus pallidus neurons known as Arkypallidal and projecting exclusively to the striatum was unveiled. At the single-cell level, these pallidostriatal Arkypallidal projections represent one of the largest extrinsic sources of GABA known to innervate the dorsal striatum. This discovery has sparked new questions regarding their role in striatal information processing, the circuit that recruit these neurons, and their influence on behaviour, especially in the context of action selection vs.

View Article and Find Full Text PDF

External segment of the globus pallidus in health and disease: Its interactions with the striatum and subthalamic nucleus.

Neurobiol Dis

January 2024

Division of System Neurophysiology, National Institute for Physiological Sciences, Okazaki, Aichi 444-8585, Japan; Department of Physiological Sciences, SOKENDAI, Okazaki, Aichi 444-8585, Japan.

The external segment of the globus pallidus (GPe) has long been considered a homogeneous structure that receives inputs from the striatum and sends processed information to the subthalamic nucleus, composing a relay nucleus of the indirect pathway that contributes to movement suppression. Recent methodological revolution in rodents led to the identification of two distinct cell types in the GPe with different fiber connections. The GPe may be regarded as a dynamic, complex and influential center within the basal ganglia circuitry, rather than a simple relay nucleus.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!