Renal NCC is unchanged in the midpregnant rat and decreased in the late pregnant rat despite avid renal Na+ retention.

Am J Physiol Renal Physiol

Department of Physiology and Functional Genomics, University of Florida, Gainesville, Florida; Department of Medicine, University of Florida, Gainesville, Florida;

Published: July 2015

Pregnancy is characterized by plasma volume expansion due to Na(+) retention, driven by aldosterone. The aldosterone-responsive epithelial Na(+) channel is activated in the kidney in pregnancy. In the present study, we investigated the aldosterone-responsive Na(+)-Cl(-) cotransporter (NCC) in mid- and late pregnant rats compared with virgin rats. We determined the abundance of total NCC, phosphorylated NCC (pNCC; pT53, pS71 and pS89), phosphorylated STE20/SPS-1-related proline-alanine-rich protein kinase (pSPAK; pS373), and phosphorylated oxidative stress-related kinase (pOSR1; pS325) in the kidney cortex. We also measured mRNA expression of NCC and members of the SPAK/NCC regulatory kinase network, serum and glucocorticoid-regulated kinase (SGK)1, total with no lysine kinase (WNK)1, WNK3, and WNK4. Additionally, we performed immunohistochemistry for NCC kidneys from virgin and pregnant rats. Total NCC, pNCC, and pSPAK/OSR1 abundance were unchanged in midpregnant versus virgin rats. In late pregnant versus virgin rats, total NCC and pNCC were decreased; however, pSPAK/OSR1 was unchanged. We detected no differences in mRNA expression of NCC, SGK1, total WNK1, WNK3, and WNK4. By immunohistochemistry, NCC was mainly localized to the apical region in virgin rats, and density in the apical region was reduced in late pregnancy. Therefore, despite high circulating aldosterone levels in pregnancy, the aldosterone-responsive transporter NCC is not increased in total or activated (phosphorylated) abundance or in apical localization in midpregnant rats, and all are reduced in late pregnancy. This contrasts to the mineralocorticoid-mediated activation of the epithelial Na(+) channel, which we have previously reported. Why and how NCC escapes aldosterone activation in pregnancy is not clear but may relate to regional differences in aldosterone sensitivity the increased K(+) intake or other undefined mechanisms.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4490381PMC
http://dx.doi.org/10.1152/ajprenal.00147.2015DOI Listing

Publication Analysis

Top Keywords

virgin rats
16
late pregnant
12
total ncc
12
ncc pncc
12
ncc
11
unchanged midpregnant
8
na+ retention
8
epithelial na+
8
na+ channel
8
pregnant rats
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!