Electron backscatter diffraction (EBSD) on ice is a decade old. We have built upon previous work to select and develop methods of sample preparation and analysis that give >90% success rate in obtaining high-quality EBSD maps, for the whole surface area (potentially) of low porosity (<15%) water ice samples, including very fine-grained (<10 μm) and very large (up to 70 mm by 30 mm) samples. We present and explain two new methods of removing frost and providing a damage-free surface for EBSD: pressure cycle sublimation and 'ironing'. In general, the pressure cycle sublimation method is preferred as it is easier, faster and does not generate significant artefacts. We measure the thermal effects of sample preparation, transfer and storage procedures and model the likelihood of these modifying sample microstructures. We show results from laboratory ice samples, with a wide range of microstructures, to illustrate effectiveness and limitations of EBSD on ice and its potential applications. The methods we present can be implemented, with a modest investment, on any scanning electron microscope system with EBSD, a cryostage and a variable pressure capability.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/jmi.12258 | DOI Listing |
Ultramicroscopy
November 2024
Department of Mechanical Engineering, Indian Institute of Technology Bombay, Powai, Mumbai, 400076, India. Electronic address:
Laser micromachining can serve as a coarse machining step during sample preparation for high-resolution characterization methods leading to swift sample preparation. However, selecting the right laser parameters is crucial to minimize the heat-affected zone, which can potentially compromise the microstructure of the specimen. This study focuses on evaluating the size of heat-affected zone in laser annular milling, aiming to ascertain a minimal scan diameter that safeguards the inner region of micropillars against thermal damage.
View Article and Find Full Text PDFMaterials (Basel)
June 2024
College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan 030024, China.
Grain boundary (GB) precipitation-induced cracking is a significant issue for S31254 super austenitic stainless steel during hot working. Investigating the deformation behavior based on precipitate morphology and distribution is essential. In this study, continuous smaller and intermittent larger precipitates were obtained through heat treatments at 950 °C and 1050 °C.
View Article and Find Full Text PDFUltramicroscopy
May 2024
CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Modern Mechanics, University of Science and Technology of China, Hefei 230027, China.
The authors of this study develop an accurate and fast method for the localization of the pattern centers (PCs) in the electron backscatter diffraction (EBSD) technique by using the model of deformation of screen moving technology. The proposed algorithm is divided into two steps: (a) Approximation: We use collinear feature points to obtain the initial value of the coordinates of the PC and the zoom factor. (b) Subdivision: We then construct a deformation function containing the three parameters to be solved, select a large region for global registration, use the inverse compositional Gauss-Newton (ICGN) to optimize the objective function, and obtain the results of iteration of the PC and the zoom factor.
View Article and Find Full Text PDFMaterials (Basel)
April 2023
Department of Physics, College of Science and Arts El-Meznab, Qassim University, Buraydah 51931, Saudi Arabia.
In this study, AA5083-WC composites were developed by ball milling followed by hot consolidation. The microstructures of the developed composites were investigated using XRD, SEM, EDX, and EBSD. The developed composites exhibited a homogeneous dispersion of WC particulates in the AA5083 matrix without any interactions at the matrix/reinforcement interface.
View Article and Find Full Text PDFMaterials (Basel)
January 2023
Mechanical Engineering Department, Abylkas Saginov Karaganda Technical University, 56 Nursultan Nazarbayev Ave, Karaganda 100027, Kazakhstan.
The method of radial shear rolling makes it possible to achieve comparable to high pressure torsion (HPT) method ultrahigh degrees of total strain level in combination with the vortex metal flow character for long-length large bulk bars unable by HPT and many other processes of sever plastic deformation (SPD). Sequential rolling of the Zr-1%Nb alloy was carried out under extreme conditions on two radial shear rolling mills with a total diameter reduction ε = 185% and a maximum total strain level = 46 mm/mm. The strain level and its cross-section distribution assessment by finite element method (FEM) simulation was studied.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!