AI Article Synopsis

  • Personal monitoring is the most effective way to evaluate exposure to black carbon (BC) in urban settings, showing that personal BC levels were 20% higher than those reported by fixed stations at schools.
  • The study involved 45 schoolchildren using portable microaethalometers and highlighted a weak correlation between personal measurements and fixed station data, depending on the time spent at school.
  • During warm weather, fixed stations aligned better with personal readings, while children received significant BC exposure during commuting (20% of total dose) and in indoor environments like classrooms and homes (56% of total dose).

Article Abstract

At city level, personal monitoring is the best way to assess people's exposure. However, it is usually estimated from a few monitoring stations. Our aim was to determine the exposure to black carbon (BC) and BC dose for 45 schoolchildren with portable microaethalometers and to evaluate the relationship between personal monitoring and fixed stations at schools (indoor and outdoor) and in an urban background (UB) site. Personal BC concentra-tions were 20% higher than in fixed stations at schools. Linear mixed-effect models showed low R(2) between personal measurements and fixed stations at schools (R(2)  ≤ 0.28), increasing to R(2)  ≥ 0.70 if considering only periods when children were at schools. For the UB station, the respective R(2) were 0.18 and 0.45, indicating the importance of the distance to the monitoring station when assessing exposure. During the warm season, the fixed stations agreed better with personal measurements than during the cold one. Children spent 6% of their time on commuting but received 20% of their daily BC dose, due to co-occurrence with road traffic rush hours and the close proximity to the source. Children received 37% of their daily-integrated BC dose at school. Indoor environments (classroom and home) were responsible for the 56% BC dose.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5008221PMC
http://dx.doi.org/10.1111/ina.12214DOI Listing

Publication Analysis

Top Keywords

fixed stations
16
stations schools
12
black carbon
8
personal monitoring
8
personal measurements
8
dose
5
personal
5
stations
5
spatiotemporally resolved
4
resolved black
4

Similar Publications

Precipitation changes reshape desert soil microbial community assembly and potential functions.

Environ Res

January 2025

Linze Inland River Basin Research Station, Key Laboratory of Ecohydrology of Inland River Basin, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, Gansu, 730000, China; University of Chinese Academy of Sciences, Beijing, 100049, China.

Understanding the responses of desert microbial communities to escalating precipitation changes is a significant knowledge gap in predicting future soil health and ecological function. Through a five-year precipitation manipulation experiment, we investigated the contrasting eco-evolutionary processes of desert bacteria and fungi that manifested in changes to the assembly and potential functions of the soil microbiome. Elevated precipitation increased the alpha diversity and network complexity of bacteria and fungi, proportion of non-dominant phyla, and abundance of carbon- and nitrogen-fixing bacteria and saprophytic, symbiotic, and pathogenic fungi.

View Article and Find Full Text PDF

Heavy Neutral Leptons via Axionlike Particles at Neutrino Facilities.

Phys Rev Lett

December 2024

Northwestern University, Department of Physics and Astronomy, 2145 Sheridan Road, Evanston, Illinois 60208, USA.

Heavy neutral leptons (HNLs) are often among the hypothetical ingredients behind nonzero neutrino masses. If sufficiently light, they can be produced and detected in fixed-target-like experiments. We show that if the HNLs belong to a richer-but rather generic-dark sector, their production mechanism can deviate dramatically from expectations associated with the standard-model weak interactions.

View Article and Find Full Text PDF

A measurement of the dijet production cross section is reported based on proton-proton collision data collected in 2016 at by the CMS experiment at the CERN LHC, corresponding to an integrated luminosity of up to 36.3 . Jets are reconstructed with the anti- algorithm for distance parameters of and 0.

View Article and Find Full Text PDF

Unmanned aerial vehicle (UAV)-based wireless sensor networks (WSNs) hold great promise for supporting ground-based sensors due to the mobility of UAVs and the ease of establishing line-of-sight links. UAV-based WSNs equipped with mobile edge computing (MEC) servers effectively mitigate challenges associated with long-distance transmission and the limited coverage of edge base stations (BSs), emerging as a powerful paradigm for both communication and computing services. Furthermore, incorporating simultaneously transmitting and reflecting reconfigurable intelligent surfaces (STAR-RISs) as passive relays significantly enhances the propagation environment and service quality of UAV-based WSNs.

View Article and Find Full Text PDF

Under regional environmental conditions such as open-pit mines and construction sites, there are usually fixed GNSS measurement points. Around these fixed stations, there are also mobile GNSS measurement modules. These mobile measurement modules offer advantages such as low power consumption, low cost, and large data volume.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!