[((Ar) PMI)Mo(CO)4 ] complexes (PMI=pyridine monoimine; Ar=Ph, 2,6-di-iso-propylphenyl) were synthesized and their electrochemical properties were probed with cyclic voltammetry and infrared spectroelectrochemistry (IR-SEC). The complexes undergo a reduction at more positive potentials than the related [(bipyridine)Mo(CO)4 ] complex, which is ligand based according to IR-SEC and DFT data. To probe the reaction product in more detail, stoichiometric chemical reduction and subsequent treatment with CO2 resulted in the formation of a new product that is assigned as a ligand-bound carboxylate, [( iPr 2PhPMI)Mo(CO)3 (CO2 )](2-) , by NMR spectroscopic methods. The CO2 adduct [( iPr 2PhPMI)Mo(CO)3 (CO2 )](2-) could not be isolated and fully characterized. However, the C-C coupling between the CO2 molecule and the PDI ligand was confirmed by X-ray crystallographic characterization of one of the decomposition products of [( iPr 2PhPMI)Mo(CO)3 (CO2 )](2-) .
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4523092 | PMC |
http://dx.doi.org/10.1002/chem.201500463 | DOI Listing |
Sci Rep
December 2024
Industrial and Systems Engineering Department, Institut Teknologi Sepuluh Nopember, Surabaya, Indonesia.
The framework of the methodology presented in this study is an effort to integrate and optimize the agro-industry sector, especially energy in biogas. In this study, the technique of the system in functional analysis is shown systematically to translate various energy requirements in the factory as criteria for performance and functional design to be integrated, optimized, and energy efficient. The case study results indicated that biogas power plants, with a capacity of 1.
View Article and Find Full Text PDFSci Rep
December 2024
School of Mechanical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, China.
Microtextured microneedles are tiny needle-like structures with micron-scale microtextures, and the drugs stored in the microtextures can be released after entering the skin to achieve the effect of precise drug delivery. In this study, the skin substitution model of Ogden's hyperelastic model and the microneedle array and microtexture models with different geometrical parameters were selected to simulate and analyse the flow of the microtexture microneedle arrays penetrating the skin by the finite-element method, and the length of the microneedles was determined to be 200 μm, the width 160 μm, and the value of the gaps was determined to be 420 μm. A four-pronged cone was chosen as the shape of microneedles, and a rectangle was chosen as the shape of the drug-carrying microneedle.
View Article and Find Full Text PDFEnviron Sci Pollut Res Int
December 2024
Biosystem Engineering Department, Tarbiat Modares University (TMU), Tehran, Iran.
Today, there are environmental problems all over the world due to the emission of greenhouse gasses caused by the combustion of diesel fuel. The excessive consumption and drastic reduction of fossil fuels have prompted the leaders of various countries, including Iran, to put the use of alternative and clean energy sources on the agenda. In recent years, the use of biofuels and the addition of nanoparticles to diesel fuel have reduced pollutant emissions, improved the environment, and enhanced the physicochemical properties of the fuel.
View Article and Find Full Text PDFRespir Physiol Neurobiol
December 2024
Department of Biology, Bates College, Lewiston, ME 04240.
Chronic hyperoxia during early postnatal development depresses breathing when neonatal rats are returned to room air and causes long-lasting attenuation of the hypoxic ventilatory response (HVR). In contrast, little is known about the control of breathing of juvenile or adult mammals after chronic exposure to moderate hyperoxia later in life. Therefore, Sprague-Dawley rats were exposed to 60% O for 7 days (juveniles) or for 4 and 14 days (adults) and ventilation was measured by whole-body plethysmography immediately after the exposure or following a longer period of recovery in room air.
View Article and Find Full Text PDFInt J Biol Macromol
December 2024
Department of Chemistry, Imam Khomeini International University, P.O. Box 288, Qazvin, Iran.
A novel nanocomposite magnetic hydrogel was synthesized based on κ-carrageenan, acrylic acid, and activated carbon as an absorbent for removing heavy metal ions from aqueous solution. FT-IR spectroscopy, thermogravimetric analysis (TGA), scanning electron microscopy (SEM), transmission electron microscopy (TEM), and vibration sample magnetometer (VSM) were employed to confirm the structure of the nanocomposite hydrogels. The effects of contact time, pH, particle size, temperature, and metal ion concentration on the metal ion adsorption were investigated.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!