Background: Urofacial syndrome (UFS) is characterised by congenital bladder dysfunction accompanied by a characteristic abnormal grimace upon smiling and crying. In recent years, biallelic mutations of HPSE2 and LRIG2 have been reported in UFS patients. Non-neurogenic neurogenic bladder (NNNB) has a bladder identical to UFS without typical facial features. The aim of this study was to analyse HPSE2 mutations in patients with UFS and NNNB or severe lower urinary tract dysfunction (LUTD) without abnormal facial expression.

Methods: Patients with UFS, NNNB and severe LUTD were enrolled in the study. We examined a total of 35 patients from 33 families. There were seven UFS patients from five different families, 21 patients with NNNB and seven with LUTD. HPSE2 gene mutation analysis was performed using the polymerase chain reaction protocol followed by Sanger sequencing in these patients.

Results: A twin pair with UFS was found to be homozygous for c.457C>T (p.Arg153*) mutation. No other pathogenetic variant was detected.

Conclusion: HPSE2 mutations were found in one UFS family but not detected in patients with NNNB and severe LUTD. Considering the increasingly recognised cases of NNNB that were diagnosed in early childhood period, genetic factors appear to be responsible. Thus, further genetic studies are needed to discover novel associated gene variants in these bladder anomalies.

Download full-text PDF

Source
http://dx.doi.org/10.1159/000381465DOI Listing

Publication Analysis

Top Keywords

hpse2 mutations
12
nnnb severe
12
urofacial syndrome
8
non-neurogenic neurogenic
8
neurogenic bladder
8
lower urinary
8
urinary tract
8
tract dysfunction
8
ufs
8
ufs patients
8

Similar Publications

Aims: Despite the tremendous improvement in therapeutic medication and intervention for coronary atherosclerotic disease (CAD), residual risks remain. Exome sequencing enables identification of rare variants and susceptibility genes for residual risks of early-onset coronary atherosclerotic disease (EOCAD) with well-controlled conventional risk factors.

Methods: We performed whole-exome sequencing of subjects who had no conventional risk factors, defined as higher body mass index, smoking, hypertension and dyslipidemia, screened from 1950 patients with EOCAD (age ≤ 45 years, at least 50% stenosis of coronary artery by angiography), and selected control subjects from 1006 elder (age ≥ 65 years) with < 30% coronary stenosis.

View Article and Find Full Text PDF

Genetic Contributions to Lower Urinary Tract Dysfunction.

Am J Med Genet A

January 2025

Division of Nephrology, Boston Children's Hospital, Harvard Medical School, Boston, United States.

Article Synopsis
  • * Non-neurogenic neurogenic bladder (NNNB) is diagnosed when a child shows urinary control issues without neurological problems, and there's growing evidence suggesting genetic causes for these symptoms, rather than just behavioral factors.
  • * In a study involving five children with NNNB or severe LUTD, researchers found two cases with genetic mutations—one in the HPSE2 gene and another in the ARL6 gene—which highlights the importance of considering genetic testing for affected children.
View Article and Find Full Text PDF

Urofacial syndrome or Ochoa syndrome (UFS or UFOS) is a rare disease characterized by inverted facial expression and bladder dysfunction that was described for the first time in Colombia. It is an autosomal recessive pathology with mutations in the HPSE2 and LRIG2 genes. However, 16% of patients do not have any mutations associated with the syndrome.

View Article and Find Full Text PDF

HPSE2, the gene-encoding heparanase 2 (Hpa2), is mutated in urofacial syndrome (UFS), a rare autosomal recessive congenital disease attributed to peripheral neuropathy. Hpa2 lacks intrinsic heparan sulfate (HS)-degrading activity, the hallmark of heparanase (Hpa1), yet it exhibits a high affinity toward HS, thereby inhibiting Hpa1 enzymatic activity. Hpa2 regulates selected genes that promote normal differentiation, tissue homeostasis, and endoplasmic reticulum (ER) stress, resulting in antitumor, antiangiogenic, and anti-inflammatory effects.

View Article and Find Full Text PDF

Heparanase 2 (Hpa2, HPSE2) is a close homolog of heparanase. Hpa2, however, lacks intrinsic heparan sulfate (HS)-degrading activity, the hallmark of heparanase enzymatic activity. Mutations of HPSE2 were identified in patients diagnosed with urofacial syndrome (UFS), a rare genetic disorder that exhibits abnormal facial expression and bladder voiding dysfunction, leading to renal damage and eventually renal failure.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!