The synthesis of amphiphilic noble metal nanoparticles involving the functional role of 3-aminopropyltrimethoxysilane (3-APTMS) and 3-glycidoxypropyltrimethoxy-silane (3-GPTMS) is reported herein. The mechanistic approach on the reactivity of these functional alkoxysilane for the typical controlled synthesis of AuNPs as evidenced from UV-visible spectroscopy and transmission electron microscopy (TEM) is reported. The experimental findings demonstrate the followings; (1) Methanolic solution of 3-GPTMS undergo interaction with 3-APTMS and the same is facilitated in the presence of 3-APTMS treated noble metal ions, (2) The molar ratio of 3-GPTMS/3-APTMS control the nanogeometry as well as the dispersibility of AuNPs in both aqueous and non-aqueous media, (3) the dispersion ability of nanoparticles is found to be based on the hydrophobic alkyl chain of the reaction product of 3-GPTMS and 3-APTMS, and (4) AuNPs shows absorption maxima as a function of polarity and refractive index of the medium. A typical application of as synthesized AuNPs as peroxidase mimetic is reported.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1166/jnn.2014.9378 | DOI Listing |
J Colloid Interface Sci
January 2025
School of Materials Science and Engineering, Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, PR China. Electronic address:
The development of earth-abundant oxygen evolution reaction (OER) electrocatalysts with high activity and durability is critical for replacing noble-metal-based catalysts in the applications of scalable water electrolysis. A freestanding electrode architecture offers significant advantages over conventional coated powder forms due to enhanced kinetics and stability. However, precise control over electrode composition and the construction of uniformly distributed active sites within these electrodes remain challenging.
View Article and Find Full Text PDFMikrochim Acta
January 2025
Indian Institute of Technology (BHU), Varanasi, 221005, India.
In the modern age, half of the population is facing various chronic illnesses due to glucose maintenance in the body, major causes of fatality and inefficiency. The early identification of glucose plays a crucial role in medical treatment and the food industry, particularly in diabetes diagnosis. In the past few years, non-enzymatic electrochemical glucose sensors have received a lot of interest for their ability to identify glucose levels accurately.
View Article and Find Full Text PDFChemSusChem
January 2025
Indian Institute of Technology Ropar, Chemistry, Nangal Road, 140001, Rupnagar, INDIA.
Photocatalytic conversion of CO2 into value-added chemicals offers a propitious alternative to traditional thermal methods, contributing to environmental remediation and energy sustainability. In this respect, covalent organic frameworks (COFs), are crystalline porous materials showcasing remarkable efficacy in CO2 fixation facilitated by visible light owing to their excellent photochemical properties. Herein, we employed Lewis acidic Zn(II) anchored pyrene-based COF (Zn(II)@Pybp-COF) to facilitate the photocatalytic CO2 utilization and transformation to 2-oxazolidinones.
View Article and Find Full Text PDFACS Nano
January 2025
DST Unit of Nanoscience (DST UNS) & Thematic Unit of Excellence (TUE), Department of Chemistry, Indian Institute of Technology Madras, Chennai 600036, India.
Elucidating the structural dynamics of ligand-stabilized noble metal nanoclusters (NCs) is critical for understanding their properties and for developing applications. Ligand rearrangement at NC surfaces is an important contributor to structural change. In this study, we investigate the dynamic behavior of ligand-protected [Ag(L)] NC's (L = 1,3-benzenedithiol) interacting with secondary ligand 2,2'-[1,4-phenylenebis (methylidynenitrilo)] bis[benzenethiol] (referred to as ).
View Article and Find Full Text PDFSmall
January 2025
Engineering Research Center of Electronic Information Materials and Devices (Ministry of Education), Guangxi Key Laboratory of Information Materials, School of Materials Science and Engineering, Guilin University of Electronic Technology, Guilin, 541004, China.
In recent years, carbon-based printable mesoscopic perovskite solar cells (p-MPSCs) without hole transport layers have garnered considerable interest because of their outstanding benefits in terms of stability and cost. However, the use of carbon electrodes instead of hole transport materials and noble metal electrodes leads to energy level mismatch, which limits the power conversion efficiency (PCE) of p-MPSCs. In this work, a molecular doping strategy is proposed employing cyclopentylmethanamine to passivate surface and subsurface crystal defects in perovskite layers while inducing an energy shift toward the p-type in the perovskite region within carbon electrodes.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!