The molecular electrostatic potential surface of unsaturated, locally electron-deficient molecules shows a positive region perpendicular to (a part of) the molecular framework. In recent years it has been shown both theoretically and experimentally that molecules are able to form noncovalent interactions with Lewis bases through this π-hole. When studying unsaturated perfluorohalogenated molecules containing a higher halogen atom, a second electropositive region is also observed near the halogen atom. This region, often denoted as a σ-hole, allows the molecules to interact with Lewis bases and form a halogen bond. To experimentally characterize the competition between both these noncovalent interactions, Fourier transform infrared and Raman spectra of liquefied noble gas solutions containing perfluorohalogenated ethylene derivatives (C2F3X; X = F, Cl, Br, or I) and trimethylamine(-d9) were investigated. Analysis of the spectra shows that in mixed solutions of trimethylamine(-d9) and C2F4 or C2F3Cl lone pair···π complex is present, while evidence for halogen-bonded complex is found in solutions containing trimethylamine(-d9) and C2F3Cl, C2F3Br, or C2F3I. For all species observed, complexation enthalpies were determined, the values varying between -4.9(1) and -24.4 kJ mol(-1).

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.jpca.5b02283DOI Listing

Publication Analysis

Top Keywords

lone pair···π
8
noncovalent interactions
8
lewis bases
8
halogen atom
8
solutions trimethylamine-d9
8
expanding lone
4
pair···π interactions
4
interactions nonaromatic
4
nonaromatic systems
4
systems nitrogen
4

Similar Publications

Crystallography of the litharge to massicot phase transformation from neutron powder diffraction data.

Acta Crystallogr B Struct Sci Cryst Eng Mater

February 2025

CSIRO Division of Mineral Products, Port Melbourne, Victoria, Australia.

The crystallographic phase change from tetragonal litharge (α-PbO; P4/nmm) to orthorhombic massicot (β-PbO; Pbcm) has been studied by full-matrix Rietveld analysis of high-temperature neutron powder diffraction data collected in equal steps from ambient temperature up to 925 K and back down to 350 K. The phase transformation takes place between 850 and 925 K, with the coexisting phases having equal abundance by weight at 885 K. The product massicot remains metastable on cooling to near ambient temperature.

View Article and Find Full Text PDF

New approaches to achieve facile and reversible dihydrogen activation are of importance for synthesis, catalysis, and hydrogen storage. Here we show that low-coordinate magnesium oxide complexes [{(nacnac)Mg}(μ-O)] , with nacnac = HC(RCNDip), Dip = 2,6-PrCH, R = Me (), Et (), Pr (), readily react with dihydrogen under mild conditions to afford mixed hydride-hydroxide complexes [{(nacnac)Mg}(μ-H)(μ-OH)] . Dehydrogenation of complexes is strongly dependent on remote ligand substitution and can be achieved by simple vacuum-degassing of (R = Pr) to regain .

View Article and Find Full Text PDF

High-Performance Oxide Crystal BaTeWO X-ray Detector with High Stability, Low Detection Limit, and Ultralow Dark Current Drift.

ACS Appl Mater Interfaces

January 2025

State Key Laboratory of Crystal Materials and Institute of Crystal Materials, Shandong University, Jinan 250100, China.

X-ray detection materials and devices have received widespread attention due to their irreplaceable role in the medical, industrial, and military fields. In this paper, BaTeWO (BTW) crystal containing lone pairs of electrons with large atomic numbers and high density is reported as a new type of oxide crystal X-ray detection material. The anisotropic X-ray detection performance of the BTW single crystal (SC) is systematically studied.

View Article and Find Full Text PDF

In the leucine (Leu) biosynthesis pathway, homeostasis is achieved through a feedback regulatory mechanism facilitated by the binding of the end-product Leu at the C-terminal regulatory domain of the first committed enzyme, isopropylmalate synthase (IPMS). In vitro studies have shown that removing the regulatory domain abolishes the feedback regulation on plant IPMS while retaining its catalytic activity. However, the physiological consequences and underlying molecular regulation on Leu flux upon removing the IPMS C-terminal domain remain to be explored in plants.

View Article and Find Full Text PDF

Competition between Halogen Atom and Ring of Halobenzenes as Hydrogen Bond Electron Donor Sites.

Chemphyschem

January 2025

Utah State University, Department of Chemistry and Biochemistry, 0300 Old Main Hill, 84322-0300, Logan, UNITED STATES OF AMERICA.

A halobenzene molecule contains several sites that are capable of acting in an electron-donating capacity within a H-bond.  One set of such sites comprise the lone electron pairs of the halogen (X) atoms on the periphery of the ring.  The π-electron system above the ring plane can also fulfill this function in many cases.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!