Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The simultaneous intracellular delivery of multiple types of payloads, such as hydrophobic drugs and nucleic acids, typically requires complex carrier systems. Herein, we demonstrate a self-deliverable form of nucleic acid-drug nanostructure that is composed almost entirely of payload molecules. Upon light activation, the nanostructure sheds the nucleic acid shell, while the core, which consists of prodrug molecules, disintegrates via an irreversible self-immolative process, releasing free drug molecules and small molecule fragments. We demonstrate that the nanostructures exhibit enhanced stability against DNase I compared with free DNA, and that the model drug (camptothecin) released exhibits similar efficacy as free, unmodified drugs toward cancer cells.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/jacs.5b00795 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!