Poly(acrylic acid)/azobenzene microcapsules were obtained through distillation precipitation polymerization and the selective removal of silica templates by hydrofluoric acid etching. The uniform, robust, and monodisperse microcapsules, confirmed by transmission electron microscopy and scanning electron microscopy, had reversible photoisomerization under ultraviolet (UV) and visible light. Under UV irradiation, azobenzene cross-linking sites in the main chain transformed from the trans to cis isomer, which induced the shrinkage of microcapsules. These photomechanical effects of azobenzene moieties were applied to the encapsulation and release of model molecules. After loading with rhodamine B (RhB), the release behaviors were completely distinct. Under steady UV irradiation, the shrinkage adjusted the permeability of the capsule, providing a novel way to encapsulate RhB molecules. Under alternate UV/visible light irradiation, a maximal release amount was reached due to the continual movement of shell networks by cyclic trans-cis photoisomerization. Also, microcapsules had absolute pH responsiveness. The diffusion rate and the final release percentage of RhB both increased with pH. The release behaviors under different irradiation modes and pH values were in excellent agreement with the Baker-Lonsdale model, indicating a diffusion-controlled release behavior. Important applications are expected in the development of photocontrolled encapsulation and release systems as well as in pH-sensitive materials and membranes.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.langmuir.5b01180 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!