Using heterodyne-detected optical Kerr effect (HD-OKE) measurements, we investigate the vibrational dynamics and the structural relaxation of water nanoconfined in Vycor porous silica samples (pore size ≃ 4 nm) at different levels of hydration and temperatures. At low levels of hydration corresponding to two complete superficial water layers, no freezing occurs and the water remains mobile at all the investigated temperatures with dynamic features similar, but not equal to, the bulk water. The fully hydrated sample shows the formation of ice at about 248 K. This process does not involve all the contained water; a part of it remains in a supercooled phase. The structural relaxation times measured from the decay of the time-dependent HD-OKE signal shows the temperature dependence largely affected by the hydration level; the low frequency (ν < 500 cm(-1)) vibrational spectra obtained by the Fourier transforms of the HD-OKE signal appear less affected by confinement.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1088/0953-8984/27/19/194107 | DOI Listing |
We develop fs laser-fabricated asymmetric couplers and zig-zag arrays consisting of single- and two-mode waveguides with bipartite Kerr nonlinearity in borosilicate (BK7) glass substrates. The fundamental mode ( orbital) is near resonance with the neighboring higher-order orbital, causing efficient light transfer at low power. Due to Kerr nonlinearity, the coupler works as an all-optical switch between and orbitals.
View Article and Find Full Text PDFNano Lett
January 2025
Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371.
Electro-optic (EO) modulation is a critical device action in photonics. Recently, the non-Drude dynamics induced by the Berry curvature dipole (BCD) in metals have attracted attention as a potential candidate for terahertz EO modulation. However, such BCD-induced EO effects can be challenging to realize, often requiring flat bands and complex materials such as a strained magic-angle twisted bilayer graphene on hexagonal boron nitride.
View Article and Find Full Text PDFJ Phys Chem B
January 2025
Chemical, Biological and Macromolecular Sciences, S. N. Bose National Centre for Basic Sciences, J. D. Block, Sec.III, Salt Lake, Kolkata, West Bengal 700 098, India.
We investigated the temperature dependence of the intermolecular dynamics, including intermolecular vibrations and collective orientational relaxation, of one of the most typical deep eutectic solvents, reline, using femtosecond Raman-induced Kerr effect spectroscopy (fs-RIKES), subpicosecond optical Kerr effect spectroscopy (ps-OKES), and molecular dynamics (MD) simulations. According to fs-RIKES results, the temperature-dependent intermolecular vibrational band peak at ∼90 cm exhibited a redshift with increasing temperature. The density-of-state (DOS) spectrum of reline by MD simulations reproduced this fs-RIKES spectral feature.
View Article and Find Full Text PDFSci Rep
January 2025
Preparatory Institute for Engineering Studies of Kairouan, (I.P.E.I.K) University of Kairouan, Kairouan, Tunisia.
We present a comprehensive analysis of the optical attributes of graphene sheets with charge carriers residing on a curved substrate. In particular, we focus on the fascinating case of Beltrami geometry and provide an explicit parametrization for this curved two-dimensional surface. By employing the massless Dirac description that is characteristic of graphene, we investigate the impact of the curved geometry on the optical properties within the sample.
View Article and Find Full Text PDFSensors (Basel)
January 2025
Department of Electrical Engineering, Indian Institute of Technology Madras, Chennai 600036, India.
In the last decade, substantial progress has been made to improve the performance of optical gyroscopes for inertial navigation applications in terms of critical parameters such as bias stability, scale factor stability, and angular random walk (ARW). Specifically, resonant fiber optic gyroscopes (RFOGs) have emerged as a viable alternative to widely popular interferometric fiber optic gyroscopes (IFOGs). In a conventional RFOG, a single-wavelength laser source is used to generate counter-propagating waves in a ring resonator, for which the phase difference is measured in terms of the resonant frequency shift to obtain the rotation rate.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!