Evaluation and screening of vaccines against tuberculosis depends on development of proper cost effective disease models along with identification of different immune markers that can be used as surrogate endpoints of protection in preclinical and clinical studies. The objective of the present study was therefore evaluation of subcutaneous model of M.tuberculosis infection along with investigation of different immune biomarkers of tuberculosis infection in BALB/c mice. Groups of mice were infected subcutaneously with two different doses : high (2×10(6) CFU) and low doses (2×10(2) CFU) of M.tuberculosis and immune markers including humoral and cellular markers were evaluated 30 days post M.tuberculosis infections. Based on results, we found that high dose of subcutaneous infection produced chronic disease with significant (p<0.001) production of immune markers of infection like IFNγ, heat shock antigens (65, 71) and antibody titres against panel of M.tuberculosis antigens (ESAT-6, CFP-10, Ag85B, 45kDa, GroES, Hsp-16) all of which correlated with high bacterial burden in lungs and spleen. To conclude high dose of subcutaneous infection produces chronic TB infection in mice and can be used as convenient alternative to aerosol models in resource limited settings. Moreover assessment of immune markers namely mycobacterial antigens and antibodies can provide us valuable insights on modulation of immune response post infection. However further investigations along with optimization of study protocols are needed to justify the outcome of present study and establish such markers as surrogate endpoints of vaccine protection in preclinical and clinical studies in future.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4411513PMC
http://dx.doi.org/10.4110/in.2015.15.2.83DOI Listing

Publication Analysis

Top Keywords

investigation immune
8
immune biomarkers
8
subcutaneous model
8
tuberculosis infection
8
infection balb/c
8
balb/c mice
8
immune markers
8
biomarkers subcutaneous
4
model tuberculosis
4
infection
4

Similar Publications

Hydrogen sulfide (HS)-mediated protein S-sulfhydration has been shown to play critical roles in several diseases. Tumor-associated macrophages (TAMs) are the predominant population of immune cells present within solid tumor tissues, and they function to restrict antitumor immunity. However, no previous study has investigated the role of protein S-sulfhydration in TAM reprogramming in breast cancer (BC).

View Article and Find Full Text PDF

Selenium, an essential trace mineral for health, has seen a rise in clinical trials over the past nearly 5 decades. Our aim here is to provide a comprehensive and concise overview of selenium clinical trials from 1976 to 2023. Overall, the evolution of selenium clinical trials over 48 years has advanced through phases of emergence, prosperity, and either stability or transition.

View Article and Find Full Text PDF

Investigating proteogenomic divergence in patient-derived xenograft models of ovarian cancer.

Sci Rep

January 2025

Department of Laboratory Medicine and Pathology, University of Minnesota School of Medicine, 420 Delaware St SE, MMC 609, Minneapolis, MN, 55455, USA.

Within ovarian cancer research, patient-derived xenograft (PDX) models recapitulate histologic features and genomic aberrations found in original tumors. However, conflicting data from published studies have demonstrated significant transcriptional differences between PDXs and original tumors, challenging the fidelity of these models. We employed a quantitative mass spectrometry-based proteomic approach coupled with generation of patient-specific databases using RNA-seq data to investigate the proteogenomic landscape of serially-passaged PDX models established from two patients with distinct subtypes of ovarian cancer.

View Article and Find Full Text PDF

In the past decades, Chimeric Antigen Receptor (CAR)-T cell therapy has achieved remarkable success, leading to the approval of six therapeutic products for haematological malignancies. Recently, the therapeutic potential of this therapy has also been demonstrated in non-tumoral diseases. Currently, the manufacturing process to produce clinical-grade CAR-T cells is complex, time-consuming, and highly expensive.

View Article and Find Full Text PDF

Depletion of myeloid-derived suppressor cells sensitizes murine multiple myeloma to PD-1 checkpoint inhibitors.

J Immunother Cancer

January 2025

Center for Translational Research in Hematologic Malignancies, Houston Methodist Neal Cancer Center, Houston Methodist Research Institute, Houston, Texas, USA

Background: Cancer immunotherapy using immune checkpoint blockade (ICB) has revolutionized cancer treatment. However, patients with multiple myeloma (MM) rarely respond to ICB. Accumulating evidence indicates that the complicated tumor microenvironment (TME) significantly impacts the efficacy of ICB therapy.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!