A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Automated Framework for Detecting Lumen and Media-Adventitia Borders in Intravascular Ultrasound Images. | LitMetric

Automated Framework for Detecting Lumen and Media-Adventitia Borders in Intravascular Ultrasound Images.

Ultrasound Med Biol

Shenzhen College of Advanced Technology, University of Chinese Academy of Sciences, Shenzhen, China; Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China; Key Lab for Health Informatics, Chinese Academy of Sciences, Shenzhen, China; The Joint Research Centre for Biomedical Engineering, Department of Electronic Engineering, Chinese University of Hong Kong, Hong Kong, China.

Published: July 2015

An automated framework for detecting lumen and media-adventitia borders in intravascular ultrasound images was developed on the basis of an adaptive region-growing method and an unsupervised clustering method. To demonstrate the capability of the framework, linear regression, Bland-Altman analysis and distance analysis were used to quantitatively investigate the correlation, agreement and spatial distance, respectively, between our detected borders and manually traced borders in 337 intravascular ultrasound images in vivo acquired from six patients. The results of these investigations revealed good correlation (r = 0.99), good agreement (>96.82% of results within the 95% confidence interval) and small average distance errors (lumen border: 0.08 mm, media-adventitia border: 0.10 mm) between the borders generated by the automated framework and the manual tracing method. The proposed framework was found to be effective in detecting lumen and media-adventitia borders in intravascular ultrasound images, indicating its potential for use in routine studies of vascular disease.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ultrasmedbio.2015.03.022DOI Listing

Publication Analysis

Top Keywords

intravascular ultrasound
16
ultrasound images
16
automated framework
12
detecting lumen
12
lumen media-adventitia
12
media-adventitia borders
12
borders intravascular
12
framework detecting
8
borders
6
lumen
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!