Structural analysis of macromolecular assemblies and their remodeling during physiological processes is instrumental to defining the fundament of cellular and molecular biology. Recent advances in computational and analytical tools for cryo-electron tomography have enabled the study of macromolecular structures in their native environment, providing unprecedented insights into cell function. Moreover, the recent implementation of direct electron detectors has progressed cryo-electron tomography to a stage where it can now be applied to the reconstruction of macromolecular structures at high resolutions. Here, we discuss some of the recent technical developments in cryo-electron tomography to reveal structures of macromolecular complexes in their physiological medium, focusing mainly on eukaryotic cells.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.abb.2015.04.006 | DOI Listing |
Nat Struct Mol Biol
January 2025
Cell Biology, Neurobiology and Biophysics, Department of Biology, Faculty of Science, Utrecht University, Utrecht, The Netherlands.
Cilia are motile or sensory organelles present on many eukaryotic cells. Their formation and function rely on axonemal microtubules, which exhibit very slow dynamics, but the underlying mechanisms are largely unexplored. Here we reconstituted in vitro the individual and collective activities of the ciliary tip module proteins CEP104, CSPP1, TOGARAM1, ARMC9 and CCDC66, which interact with each other and with microtubules and, when mutated in humans, cause ciliopathies such as Joubert syndrome.
View Article and Find Full Text PDFNat Commun
January 2025
Department of Chemistry, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea.
Phase separation of specific proteins into liquid-like condensates is a key mechanism for forming membrane-less organelles, which organize diverse cellular processes in space and time. These protein condensates hold immense potential as biomaterials capable of containing specific sets of biomolecules with high densities and dynamic liquid properties. Despite their appeal, methods to manipulate protein condensate materials remain largely unexplored.
View Article and Find Full Text PDFSTAR Protoc
January 2025
Key Laboratory for Protein Sciences of Ministry of Education, School of Life Sciences, Tsinghua University, Beijing 100084, China; State Key Laboratory of Membrane Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China; Tsinghua-Peking Joint Center for Life Sciences, Beijing 100084, China; Beijing Frontier Research Center for Biological Structure, Beijing 100084, China; School of Life Sciences, Tsinghua University, Beijing 100084, China. Electronic address:
Contrast transfer function (CTF) estimation is essential to the data processing workflow of cryo-electron tomography (cryoET). Here, we present a protocol for CTF estimation of the cryoET tilt series with CTFMeasure. CTFMeasure can estimate the CTF parameters together with the absolute tilt angle offset of the sample.
View Article and Find Full Text PDFJ Cell Biol
March 2025
Cell Biology, Neurobiology and Biophysics, Department of Biology, Faculty of Science, Utrecht University, Utrecht, The Netherlands.
Centrioles are microtubule-based organelles required for the formation of centrosomes and cilia. Centriolar microtubules, unlike their cytosolic counterparts, are stable and grow very slowly, but the underlying mechanisms are poorly understood. Here, we reconstituted in vitro the interplay between the proteins that cap distal centriole ends and control their elongation: CP110, CEP97, and CPAP/SAS-4.
View Article and Find Full Text PDFNat Commun
January 2025
Center of Cryo-Electron Microscopy, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.
The multi-enzyme pyruvate dehydrogenase complex (PDHc) links glycolysis to the citric acid cycle and plays vital roles in metabolism, energy production, and cellular signaling. Although all components have been individually characterized, the intact PDHc structure remains unclear, hampering our understanding of its composition and dynamical catalytic mechanisms. Here, we report the in-situ architecture of intact mammalian PDHc by cryo-electron tomography.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!