Electrophoretic deposition (EPD) technique has been developed for the fabrication of antibiotic-loaded PHBV microsphere (MS)-alginate antibacterial coatings. The composite coatings deposited from suspensions with different MS concentrations were produced in order to demonstrate the versatility of the proposed method for achieving functional coatings with tailored drug loading and release profiles. Linearly increased deposit mass with increasing MS concentrations was obtained, and MS were found to be homogeneously stabilized in the alginate matrix. Chemical composition, surface roughness and wettability of the deposited coatings were measured by Fourier transform infrared (FTIR) spectroscopy, laser profilometer and water contact angle instruments, respectively. The co-deposition mechanism was described by two separate processes according to the results of relevant measurements: (i) the deposition of alginate-adsorbed MS and (ii) the non-adsorbed alginate. Qualitative antibacterial tests indicated that MS containing coatings exhibit excellent inhibition effects against E. coli (gram-negative bacteria) after 1h of incubation. The proposed coating system combined with the simplicity of the EPD technique can be considered a promising surface modification approach for the controlled in situ delivery of drug or other biomolecules.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.colsurfb.2015.04.009 | DOI Listing |
ACS Appl Mater Interfaces
January 2025
Department of Chemical Engineering, University of Michigan, Ann Arbor, Michigan 48109, United States.
Colloidal crystals of micrometer-sized colloids create prismatic structural colors through the grating diffraction of visible light. Here, we develop design rules to engineer such structural color by specifically accounting for the effect of crystal defects. The local quality and grain size of the colloidal structure are varied by performing self-assembly in the presence of a direct current (DC) electric field.
View Article and Find Full Text PDFRSC Adv
January 2025
Department of Materials Science and Engineering, Institute of Space Technology Islamabad Pakistan
Poor wear- and corrosion-resistance of 316L SS implants are critical problems in orthopedic implants. This study aims to improve the wear- and corrosion-resistance of 316L SS through surface coating. In this study, a bilayer composite coating consisting of polyether ether ketone (PEEK) as the first layer, and titania (TiO)- and Cu-doped mesoporous bioactive glass nanoparticles (Cu-MBGNs) were deposited as the second layer on a 316L SS electrophoretic deposition (EPD).
View Article and Find Full Text PDFBiochim Biophys Acta Gene Regul Mech
January 2025
School of Biological Sciences, National Institute of Science Education and Research (NISER) Bhubaneswar, P.O. Bhimpur-Padanpur, Jatni, Khurda, Odisha 752050, India; Homi Bhabha National Institute (HBNI), Training School Complex, Anushaktinagar, Mumbai 400094, India. Electronic address:
Pseudoexfoliation (PEX) is an age-related, complex systemic disorder of protein aggregopathy. It is characterized by the extracellular fibril depositions, termed PEX fibrils, initially observed in various organ tissues during pseudoexfoliation syndrome (PEXS) and with significant prominence in the eye during advanced pseudoexfoliation glaucoma (PEXG). The study explores the association between CACNA1 A (calcium channel, voltage-dependent, P/Q type, alpha 1 A subunit) variants and PEX in an Indian population.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
Department of Materials Science and Technology, Nagaoka University of Technology, 1603-1 Kamitomioka, Nagaoka, Niigata 940-2188, Japan.
Apatite nanoparticles are biocompatible nanomaterials, so their film formation on biodevices is expected to provide effective bonding with living organisms. However, the biodevice-apatite interfaces have not yet been elucidated because there is little experimental evaluation and discussion on the nanoscale interactions, as well as the apatite surface reactivities. Our group has demonstrated the biomolecular adsorption properties on a quartz crystal microbalance with dissipation (QCM-D) sensor coated with apatite nanoparticles, demonstrating the applicability of apatite nanoparticle films on devices.
View Article and Find Full Text PDFJ Orthop Res
December 2024
Department of Orthopedic Surgery, Rush University Medical Center, Chicago, Illinois, USA.
Periprosthetic joint infection (PJI) is a leading cause and major complication of joint replacement failure. As opposed to standard-of-care systemic antibiotic prophylaxis for PJI, we developed and tested titanium femoral intramedullary implants with titania nanotubes (TNTs) coated with the antibiotic gentamicin and slow-release agent chitosan through electrophoretic deposition (EPD) in a mouse model of PJI. We hypothesized that these implants would enable local gentamicin delivery to the implant surface and surgical site, effectively preventing bacterial colonization.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!