Purpose: Developmental mutations that inhibit diaphragmatic and pulmonary mesenchyme formation have been shown to cause congenital diaphragmatic hernia (CDH) and pulmonary hypoplasia (PH). Kinesin family member 7 (Kif7) plays a crucial role in diaphragmatic and pulmonary morphogenesis by controlling proliferation of mesenchymal cells. Loss of Kif7 has been reported to result in diaphragmatic defects and PH. We hypothesized that diaphragmatic and pulmonary Kif7 expression is decreased in the nitrofen-induced CDH model.
Methods: Timed-pregnant rats were exposed to either nitrofen or vehicle on gestational day 9 (D9). Fetal diaphragms and lungs were microdissected on D13, D15, and D18, and divided into control and nitrofen-exposed specimens. Gene expression levels of Kif7 were analyzed by qPCR. Immunohistochemical staining was performed to evaluate Kif7 protein expression.
Results: Relative mRNA expression of Kif7 was significantly reduced in pleuroperitoneal folds (D13), developing diaphragms and lungs (D15), and fully muscularized diaphragms and differentiated lungs (D18) of nitrofen-exposed fetuses compared to controls. Immunoreactivity/immunofluorescence of Kif7 was markedly decreased in diaphragmatic and pulmonary mesenchyme of nitrofen-exposed fetuses on D13, D15, and D18 compared to controls.
Conclusion: Decreased Kif7 expression during diaphragmatic development may interfere with mesenchymal cell proliferation, leading to defective pleuroperitoneal folds, and resulting in diaphragmatic defects and associated PH in the nitrofen-induced CDH model.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jpedsurg.2015.03.058 | DOI Listing |
Conf Proc Int Conf Image Form Xray Comput Tomogr
August 2024
Department of Radiology, Perelman School of Medicine, Philadelphia, PA, USA.
Respiratory motion phantoms can be used for evaluation of CT imaging technologies such as motion artifact reduction algorithms and deformable image registration. However, current respiratory motion phantoms do not exhibit detailed lung tissue structures and thus do not provide a realistic testing environment. This paper presents PixelPrint, a method for 3D-printing deformable lung phantoms featuring highly realistic internal structures, suitable for a broad range of CT evaluations, optimizations, and research.
View Article and Find Full Text PDFPediatr Res
January 2025
Department of Pediatric Surgery, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan.
Background: To retrospectively investigate the developmental outcomes at 3 years of age in patients with congenital diaphragmatic hernia (CDH) using a multicenter collaborative research approach.
Methods: We evaluated patients with CDH and no other malformations born between 2010 and 2016 in seven facilities in the Japanese CDH Research Group. The developmental quotient (DQ) at 3 years of age was evaluated using the Kyoto Scale of Psychological Development 2001, the most standardized scale in Japan.
Anesth Analg
January 2025
From the Unit for Anaesthesiological Investigations, Department of Anaesthesiology, Pharmacology, Intensive Care and Emergency Medicine, University of Geneva, Geneva, Switzerland.
Background: The rapid advancement of minimally invasive surgical techniques has made laparoscopy a preferred alternative because it reduces postoperative complications. However, inflating the peritoneum with CO2 causes a cranial shift of the diaphragm decreasing lung volume and impairing gas exchange. Additionally, CO2 absorption increases blood CO2 levels, further complicating mechanical ventilation when the lung function is already compromised.
View Article and Find Full Text PDFAnn Surg Oncol
January 2025
Department of Thoracic Surgery, Faculty of Medicine, Hacettepe University, Sihhiye, Ankara, Turkey.
Expert Rev Respir Med
January 2025
Division of Pulmonary & Critical Care Medicine, Mayo Clinic, Rochester, MN, USA.
Introduction: Amyloidosis, a polymeric deposition disease classified according to protein subtype, may have varied pulmonary manifestations. Its anatomic-radiologic phenotypes include nodular, cystic, alveolar-septal, and tracheobronchial forms. Clinical presentation may range from asymptomatic parenchymal nodules to respiratory failure from diffuse parenchymal infiltration or diaphragmatic deposition.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!