In this study, several novel sulfamides were synthesized and evaluated for their acetylcholine esterase (AChE) and human carbonic anhydrase I, and II isoenzymes (hCA I and II) inhibition profiles. Reductive amination of methoxyacetophenones was used for the synthesis of amines. Amines were converted to sulfamoylcarbamates with chlorosulfonyl isocyanate (CSI) in the presence of BnOH. Pd-C catalyzed hydrogenolysis of sulfamoylcarbamates afforded sulfamides. These novel compounds were good inhibitors of the cytosolic hCA I, and hCA II with Ki values in the range of 45.9±8.9-687.5±84.3 pM for hCA I, and 48.80±8.2-672.2±71.9pM for hCA II. The inhibitory effects of the synthesized novel compounds on AChE were also investigated. The Ki values of these compounds were in the range of 4.52±0.61-38.28±6.84pM for AChE. These results show that hCA I, II, and AChE were effectively inhibited by the novel sulfamoylcarbamates 17-21 and sulfamide derivatives 22-26. All investigated compounds were docked within the active sites of the corresponding enzymes revealing the reasons of the effective inhibitory activity.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bmc.2015.04.019DOI Listing

Publication Analysis

Top Keywords

carbonic anhydrase
8
acetylcholine esterase
8
novel sulfamoylcarbamates
8
novel compounds
8
hca
6
novel
5
discovery potent
4
potent carbonic
4
anhydrase acetylcholine
4
esterase inhibitors
4

Similar Publications

The major limiting factor of photosynthesis in C3 plants is the enzyme, rubisco which inadequately distinguishes between carbon dioxide and oxygen. To overcome catalytic deficiencies of Rubisco, cyanobacteria utilize advanced protein microcompartments, called the carboxysomes which envelopes the enzymes, Rubisco and Carbonic Anhydrase (CA). These microcompartments facilitate the diffusion of bicarbonate ions which are converted to CO by CA, following in an increase in carbon flux near Rubisco boosting CO fixation process.

View Article and Find Full Text PDF

Basic Science and Pathogenesis.

Alzheimers Dement

December 2024

Alzheimer's Center at Lewis Katz School of Medicine, Temple University, Philadelphia, PA, USA.

Background: FDA-approved carbonic anhydrase inhibitors (CAIs) have been shown to attenuate Aβ pathology, neurodegeneration, and cerebrovascular dysfunction in models of Alzheimer's disease (AD) and cerebral amyloid angiopathy (CAA), suggesting a key role for CAs as a novel and previously unexplored target for AD therapy. Amyloid β accumulation severely impairs the cerebral neuro-signaling pathway with a progressive loss in neurotrophic factors (NTFs, i.e.

View Article and Find Full Text PDF

Basic Science and Pathogenesis.

Alzheimers Dement

December 2024

Alzheimer's Center at Lewis Katz School of Medicine, Temple University, Philadelphia, PA, USA.

Background: Brain endothelial cell (EC) stress, including that induced by vascular amyloid β (Aβ) deposits in cerebral amyloid angiopathy (CAA) and Alzheimer's disease (AD), contributes to cerebral blood flow impairment, blood brain barrier (BBB) damage, neurovascular unit dysfunction, microhemorrhages and hypoperfusion, precipitating neurodegeneration and neuroinflammation processes. Epidemiological and experimental evidence suggests that hyperhomocysteinemia (Hhcy) contributes to increasing AD risk as well as CAA pathology. However, the cellular and molecular mechanisms through which Aβ and Hhcy drive EC and BBB dysfunction, whether the molecular effects of these challenges are additive or independent, and possible therapeutic strategies, remain to be determined.

View Article and Find Full Text PDF

Basic Science and Pathogenesis.

Alzheimers Dement

December 2024

Alzheimer's Center at Lewis Katz School of Medicine, Temple University, Philadelphia, PA, USA.

Background: Alzheimer's disease (AD) is characterized- at both early and late stages- by neurovascular impairment. In AD, dysfunctional cerebral microvasculature is accompanied by an inflammatory response, contributing to Aβ and tau accumulation, brain cell stress and death, impaired clearance of metabolic waste, BBB permeability, and ultimately leading to neuronal demise and cognitive impairment. We previously showed that Aβ peptides induce mitochondrial dysregulation and caspase-mediated apoptosis in brain cells, including endothelial, glial, and smooth muscle cells.

View Article and Find Full Text PDF

Basic Science and Pathogenesis.

Alzheimers Dement

December 2024

Alzheimer's Center at Lewis Katz School of Medicine, Temple University, Philadelphia, PA, USA.

Background: Over the years, Alzheimer's Disease (AD) has been identified as a multifactorial disease, with cerebral vascular dysfunction being one of the most common and early pathological features. Vascular risk factors (VRF) are thought to further increase AD risk and pathology. Cerebral Amyloid Angiopathy (CAA) is defined as the accumulation of amyloid-beta (Aβ) on the vascular wall.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!