A growing literature explores intra-urban variation in pollution concentrations. Few studies, however, have examined spatial variation during "peak" hours of the day (e.g., rush hours, inversion conditions), which may have strong bearing for source identification and epidemiological analyses. We aimed to capture "peak" spatial variation across a region of complex terrain, legacy industry, and frequent atmospheric inversions. We hypothesized stronger spatial contrast in concentrations during hours prone to atmospheric inversions and heavy traffic, and designed a 2-year monitoring campaign to capture spatial variation in fine particles (PM2.5) and black carbon (BC). Inversion-focused integrated monitoring (0600-1100 hours) was performed during year 1 (2011-2012) and compared with 1-week 24-h integrated results from year 2 (2012-2013). To allocate sampling sites, we explored spatial distributions in key sources (i.e., traffic, industry) and potential modifiers (i.e., elevation) in geographic information systems (GIS), and allocated 37 sites for spatial and source variability across the metropolitan domain (~388 km(2)). Land use regression (LUR) models were developed and compared by pollutant, season, and sampling method. As expected, we found stronger spatial contrasts in PM2.5 and BC using inversion-focused sampling, suggesting greater differences in peak exposures across urban areas than is captured by most integrated saturation campaigns. Temporal variability, commercial and industrial land use, PM2.5 emissions, and elevation were significant predictors, but did not more strongly predict concentrations during peak hours.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4913170PMC
http://dx.doi.org/10.1038/jes.2015.14DOI Listing

Publication Analysis

Top Keywords

spatial variation
16
spatial
8
24-h integrated
8
pm25 black
8
black carbon
8
atmospheric inversions
8
stronger spatial
8
hours
5
variation inversion-focused
4
inversion-focused 24-h
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!