Unlabelled: Direct addition of Oenococcus oeni starters into wine can cause viability problems. In the present study, the influence of ethanol in wine-simulated conditions on O. oeni has been evaluated by complementing microarray techniques and DIGE proteomics. Two different ethanol concentrations were studied. In 12% ethanol, pyrimidine anabolism was stimulated, but in 8% ethanol some energy-consuming biosynthetic pathways were limited. The most significant result was the stress response induced by alcohol that concerned both the cell-envelope and specific stress proteins. Interestingly, 8% and 12% ethanol triggered different stress responses: in mild ethanol stress (8%), chaperones with prevalent refolding activity (like HSP20) were over-expressed, whereas at higher alcohol concentration (12%), together with HSP20 and the refolding DNAJ/K, also chaperones having proteolytic activity (like ClpP) were induced. Furthermore the stress response repressor HrcA was downregulated only at 12% ethanol, suggesting that it controls stress pathways, which are different from those active at 8% alcohol. This result confirms that the HrcA system is operative in O. oeni where the CtrS system is prevalent.

Biological Significance: The use of malolactic starter cultures has become widespread to control the MLF process and to prevent off-flavors. There is significant interest in understanding the molecular mechanisms that O. oeni uses to adapt to harsh wine conditions. The overall results highlight that the alcohol-induced stress response involves not only biosynthesis of stress proteins but also envelope-linked mechanisms. From a practical point of view this research underlines the importance of starters acclimation to induce responses that would allow better adaptation to the wine. As a consequence, a well adapted starter can complete malolactic fermentation and improve the final wine quality.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jprot.2015.04.019DOI Listing

Publication Analysis

Top Keywords

12% ethanol
12
stress response
12
dige proteomics
8
oenococcus oeni
8
ethanol
8
ethanol wine-simulated
8
wine-simulated conditions
8
stress
8
stress proteins
8
oeni
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!