Charge variants in recombinant proteins are an important series of protein modifications, whose potential role on protein stability, activity, immunogenicity, and pharmacokinetics continues to be studied. Monoclonal antibodies in particular have been shown to have a wide range of acidic species variants, including those associated with the addition of covalent modifications as well as the chemical degradation at specific peptide regions on the antibody. These variants play a significant role toward the overall heterogeneity of recombinant therapeutic proteins and are typically monitored during manufacturing to ensure they lie within proven acceptable ranges. In this work, it has been found that the supplementation of members of the bioflavonoid chemical family into mammalian cell culture media was effective toward the reduction of acidic species charge variants on recombinant monoclonal antibodies and dual variable domain immunoglobulins. The demonstrated reduction in acidic species through the use of bioflavonoids facilitates the manufacturing of a less heterogeneous product with potential improvements in antibody structure and function.

Download full-text PDF

Source
http://dx.doi.org/10.1002/btpr.2095DOI Listing

Publication Analysis

Top Keywords

acidic species
16
reduction acidic
12
charge variants
12
variants recombinant
12
cell culture
8
culture media
8
species charge
8
recombinant therapeutic
8
therapeutic proteins
8
monoclonal antibodies
8

Similar Publications

Comparative organelle genomics in Daphniphyllaceae reveal phylogenetic position and organelle structure evolution.

BMC Genomics

January 2025

State Key Laboratory of Hybrid Rice, Laboratory of Plant Systematics and Evolutionary Biology, College of Life Sciences, Wuhan University, Wuhan, 430072, China.

The family Daphniphyllaceae has a single genus, and no relevant comparative phylogenetic study has been reported on it. To explore the phylogenetic relationships and organelle evolution mechanisms of Daphniphyllaceae species, we sequenced and assembled the chloroplast and mitochondrial genomes of Daphniphyllum macropodum. We also conducted comparative analyses of organelles in Daphniphyllaceae species in terms of genome structure, phylogenetic relationships, divergence times, RNA editing events, and evolutionary rates, etc.

View Article and Find Full Text PDF

Intestinal flow and digestive parameters of Lutzomyia longipalpis larvae.

J Insect Physiol

January 2025

Laboratório de Fisiologia de Insetos Hematófagos, Departamento de Parasitologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Brazil. Electronic address:

Lutzomyia longipalpis Lutz & Neiva, 1912 (Diptera, Psychodidae), is the primary vector of Leishmania infantum Nicole, 1908, the etiological agent of American visceral leishmaniasis. During their development, sandfly larvae pass through four instars, consuming soil particles enriched with microorganisms and decomposing organic material. In numerous insect species, the intestinal epithelium not only secretes digestive enzymes and absorbs digested nutrients but also carries out additional functions, such as regulating luminal pH and facilitating the absorption or secretion of ions and water.

View Article and Find Full Text PDF

Mechanistic implications of the Mediterranean diet in patients with newly diagnosed Crohn's disease- multi-omic results from a prospective cohort.

Gastroenterology

January 2025

Division of Gastroenterology, Rabin Medical Center, Petah-Tikva, Israel; Faculty of Medical and Health Sciences, Tel Aviv University, Tel Aviv, Israel.

Background: To decipher the mechanisms underlying the protective role of the Mediterranean diet (MED) in Crohn's disease (CD), we explored the implications of adherence to MED on CD course, inflammatory markers, microbial and metabolite composition.

Methods: Patients with newly diagnosed CD were recruited and followed prospectively. MED adherence was assessed by repeated food frequency questionnaires (FFQ), using a predefined IBDMED score, alongside validated MED adherence screeners.

View Article and Find Full Text PDF

The probing of live bacteria via the incorporation of fluorescent D-amino acids (FDAAs) during peptidoglycan synthesis has been shown to be practical for visualizing both gram-positive and gram-negative bacterial species. This study demonstrates the reliability and applications of FDAA labelling for the fluorescent imaging of an obligate anaerobe.

View Article and Find Full Text PDF

High performance ozone nanobubbles based advanced oxidation processes (AOPs) for degradation of organic pollutants under high pollutant loading.

J Environ Manage

January 2025

Department of Sanitary Engineering, Faculty of Civil and Environmental Engineering, Gdansk University of Technology, Narutowicza 11/12 Str., 80-233, Gdansk, Poland; School of Civil, Environmental, and Architectural Engineering, College of Engineering, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea. Electronic address:

Advanced Oxidation Processes (AOPs) have proven to be an effective solution for chemical wastewater treatment, particularly for degradation of organic pollutants, especially dyes. Ozonation is recognized as one of the most prevalent AOPs. Nevertheless, some cases show a lowered efficiency of O utilization which is attributed to its inadequate distribution in the treated water causing low residence time, low mass transfer coefficient as well as shorter half-life.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!