We have previously described reduced myelination and corresponding myelin basic protein (MBP) expression in the central nervous system of Src homology 2 domain-containing protein tyrosine phosphatase 1 (SHP-1) deficient motheaten (me/me) mice compared with normal littermate controls. Deficiency in myelin and MBP expression in both brains and spinal cords of motheaten mice correlated with reduced MBP mRNA expression levels in vivo and in purified oligodendrocytes in vitro. Therefore, SHP-1 activity seems to be a critical regulator of oligodendrocyte gene expression and function. Consistent with this role, this study demonstrates that oligodendrocytes of motheaten mice and SHP-1-depleted N20.1 cells produce higher levels of reactive oxygen species (ROS) and exhibit corresponding markers of increased oxidative stress. In agreement with these findings, we demonstrate that increased production of ROS coincides with ROS-induced signaling pathways known to affect myelin gene expression in oligodendrocytes. Antioxidant treatment of SHP-1-deficient oligodendrocytes reversed the pathological changes in these cells, with increased myelin protein gene expression and decreased expression of nuclear factor (erythroid-2)-related factor 2 (Nrf2) responsive gene, heme oxygenase-1 (HO-1). Furthermore, we demonstrate that SHP-1 is expressed in human white matter oligodendrocytes, and there is a subset of multiple sclerosis subjects that demonstrate a deficiency of SHP-1 in normal-appearing white matter. These studies reveal critical pathways controlled by SHP-1 in oligodendrocytes that relate to susceptibility of SHP-1-deficient mice to both developmental defects in myelination and to inflammatory demyelinating diseases.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4534322PMC
http://dx.doi.org/10.1002/glia.22842DOI Listing

Publication Analysis

Top Keywords

gene expression
12
reactive oxygen
8
oxygen species
8
shp-1 oligodendrocytes
8
mbp expression
8
motheaten mice
8
white matter
8
oligodendrocytes
7
expression
7
shp-1
6

Similar Publications

Determination of antimicrobial susceptibility and virulence-related genes of Trueperella pyogenes strains isolated from various clinical specimens in animals.

Pol J Vet Sci

June 2024

Department of Surgery, Faculty of Veterinary Medicine, University of Siirt, Kezer Campus, Veysel Karani District, University Street, Siirt/Türkiye.

In this study, a total of 32 Trueperella pyogenes strains isolated from different disease specimens in cattle, sheep and goats were examined. Antimicrobial susceptibility of the isolates to 10 antimicrobials were determined using the E-test method and MIC values of the antimicrobials were investigated. The genes that play a role in the antimicrobial resistance or virulence of T.

View Article and Find Full Text PDF

The effect of silymarin on diabetes mellitus-induced male rats reproductive impairment: Evidences for role of heat shock proteins 70 and 90.

Pol J Vet Sci

December 2024

Department of Basic sciences, Faculty of Veterinary Medicine, Tabriz medical sciences branch, Islamic Azad University, 5159115705, Tabriz, Iran.

Male fertility is adversely influenced by diabetes. The beneficial effects of antioxidant bioflavonoids in improving fertility have been reported. This study was conducted to evaluate the effects of silymarin on diabetes mellitus-induced male reproductive impairment in rats by investigating its role in Hsp70 and Hsp90 expression.

View Article and Find Full Text PDF

Cellular distribution of some intermediate filaments in the rat mammary gland during pregnancy, lactation and involution.

Pol J Vet Sci

December 2024

Department of Histology and Embryology, Faculty of Veterinary Medicine, University of Dicle, 21280 Diyarbakır, Turkey.

Intermediate filaments (IFs) play a major role in determining and maintaining cell shape and anchoring intracellular organelles in place, in the tissues and organs of several species, starting from the early stages of development. This study was aimed at the immunohistochemical investigation of the presence, cellular localization and temporal distribution of the intermediate filaments keratin 8 (CK8), keratin 18 (CK18), keratin 19 (CK19), vimentin, desmin and laminin, all of which contribute to the formation of the cytoskeleton in the rat mammary gland during pregnancy, lactation and involution. On days 7, 14 and 21 of pregnancy (pregnancy period), on day 7 post-delivery (lactation period) and on day 7 post-weaning (involution period), under ketamine hydrochloride (Ketalar-Pfizer) (90 mg/kg) anesthesia, two mammary glands were fully excised from the abdominal region.

View Article and Find Full Text PDF

Background: Real-time reverse transcription quantitative polymerase chain reaction (RT-qPCR) is a powerful tool for analysing target gene expression in biological samples. To achieve reliable results by RT-qPCR, the most stable reference genes must be selected for proper data normalisation, particularly when comparing cells of different types. We aimed to choose the least variable candidate reference genes among eight housekeeping genes tested within a set of human cancer cell lines (HeLa, MCF-7, SK-UT-1B, A549, A431, SK-BR-3), as well as four lines of normal, non-malignant mesenchymal stromal cells (MSCs) of different origins.

View Article and Find Full Text PDF

Background: Alternative cleavage and polyadenylation (APA) is a crucial post-transcriptional gene regulation mechanism that regulates gene expression in eukaryotes by increasing the diversity and complexity of both the transcriptome and proteome. Despite the development of more than a dozen experimental methods over the last decade to identify and quantify APA events, widespread adoption of these methods has been limited by technical, financial, and time constraints. Consequently, APA remains poorly understood in most eukaryotes.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!