Chemical modification and immobilisation of laccase from Trametes hirsuta and from Myceliophthora thermophila.

Enzyme Microb Technol

School of Biotechnology & National Centre for Sensors Research, Dublin City University, Dublin 9, Ireland. Electronic address:

Published: May 2010

Laccase from two different source organisms, Myceliophthora thermophila and Trametes hirsuta, were subjected to chemical modification in solution by (i) two bifunctional reagents, ethylene-glycol-N-hydroxy succinimide (EGNHS) and glutaraldehyde and (ii) by the monofunctional citraconic anhydride. The untreated and chemically modified forms of both enzymes were then immobilised onto three different types of mesoporous silicate (MPS) particle (MCM, CNS and SBA-15). Thermal stabilities of native, modified-soluble and immobilised laccases were then evaluated. Although the two laccases have similar lysine contents, those of M. thermophila are clearly more amenable to chemical modification. Treatment of the M. thermophila enzyme with EGNHS led to a 8.7-fold increase in thermal stability over the free soluble enzyme while glutaraldehyde gave a 5.7-fold increase. Increased activity of M. thermophila laccase occurred only with citraconic anhydride modification (a 3-fold increase), while the glutaraldehyde modification marginally increased the activity of the T. hirsuta enzyme (by 1.2-fold). Upon immobilisation onto MPS, the greatest increase in stability was for the glutaraldehyde-treated M. thermophila preparation on SBA-15 (24-fold over the soluble enzyme). Chemical modification of laccase from T. hirsuta with both glutaraldehyde and EGNHS gave only a 2-fold increase in stability, increasing >4-fold upon immobilisation onto SBA-15 and MCM-41/98.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.enzmictec.2010.01.004DOI Listing

Publication Analysis

Top Keywords

chemical modification
16
trametes hirsuta
8
myceliophthora thermophila
8
thermophila laccase
8
citraconic anhydride
8
soluble enzyme
8
increased activity
8
increase stability
8
thermophila
6
modification
5

Similar Publications

Polyamide (PA) has notable physical and chemical properties and is one of the most versatile synthetic materials in the industrial sector. However, its hydrophobicity creates significant challenges in its beneficiation and modification. Modifications of PA with chitosan nanoparticles (CNPs) can improve its undesired properties but are rarely found in the literature due to the weak interaction between the chemical groups of both structures.

View Article and Find Full Text PDF

Substantial amounts of oily wastewater are inevitably generated during petroleum extraction and petrochemical production, and the effective treatment of these O/W emulsions is crucial for environmental protection and resource recovery. The development of an environmentally friendly, cost-effective, and efficient demulsifier that operates effectively at low concentrations remains a significant challenge. This study introduces an eco-friendly ionic liquid demulsifier, Cotton Cellulose-Dodecylamine (CCDA), which demonstrates exceptional demulsification performance at low concentrations.

View Article and Find Full Text PDF

Design and theoretical calculation of chitosan derivatives: Amphiphilic chitosan micelles loaded with Chinese fir essential oil.

Int J Biol Macromol

January 2025

Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, Guangxi Collaborative Innovation Center for Chemistry and Engineering of Forest Products, Guangxi Minzu University, Nanning 530006, Guangxi, China.

The unique structure of chitosan-based micelles can be loaded with essential oil, so it is significant to study the modification of chitosan and the interactions between chitosan and essential oil, while molecular dynamics (MD) simulation and density functional theory (DFT) provide a solution. In this study, three kinds of amphiphilic chitosan derivatives (CSDs) were constructed by grafting of different hydrophilic and hydrophobic groups. Amphiphilic chitosan micelles loaded with Chinese fir essential oil (CFEO) were prepared by self-assembly.

View Article and Find Full Text PDF

In the present investigation, redox-responsive-based dextran carriers were developed for the controlled release of hydrophobic molecules via a reducing agent naturally present in cells, namely glutathione. In this sense, dextran was modified with a thiol derivative. The roles of the hydrophilic segments in the molecular self-organisation of polysaccharide derivatives into nanoparticles were investigated by varying the average dextran molar mass.

View Article and Find Full Text PDF

Integrating nanotechnology with tissue engineering has revolutionized biomedical sciences, enabling the development of advanced therapeutic strategies. Tissue engineering applications widely utilize alginate due to its biocompatibility, mild gelation conditions, and ease of modification. Combining different nanomaterials with alginate matrices enhances the resulting nanocomposites' physicochemical properties, such as mechanical, electrical, and biological properties, as well as their surface area-to-volume ratio, offering significant potential for tissue engineering applications.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!