In vitro selection of a sodium-specific DNAzyme and its application in intracellular sensing.

Proc Natl Acad Sci U S A

Departments of Biochemistry, Chemistry, and Materials Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801

Published: May 2015

Over the past two decades, enormous progress has been made in designing fluorescent sensors or probes for divalent metal ions. In contrast, the development of fluorescent sensors for monovalent metal ions, such as sodium (Na(+)), has remained underdeveloped, even though Na(+) is one the most abundant metal ions in biological systems and plays a critical role in many biological processes. Here, we report the in vitro selection of the first (to our knowledge) Na(+)-specific, RNA-cleaving deoxyribozyme (DNAzyme) with a fast catalytic rate [observed rate constant (ko(bs)) ∼ 0.1 min(-1)], and the transformation of this DNAzyme into a fluorescent sensor for Na(+) by labeling the enzyme strand with a quencher at the 3' end, and the DNA substrate strand with a fluorophore and a quencher at the 5' and 3' ends, respectively. The presence of Na(+) catalyzed cleavage of the substrate strand at an internal ribonucleotide adenosine (rA) site, resulting in release of the fluorophore from its quenchers and thus a significant increase in fluorescence signal. The sensor displays a remarkable selectivity (>10,000-fold) for Na(+) over competing metal ions and has a detection limit of 135 µM (3.1 ppm). Furthermore, we demonstrate that this DNAzyme-based sensor can readily enter cells with the aid of α-helical cationic polypeptides. Finally, by protecting the cleavage site of the Na(+)-specific DNAzyme with a photolabile o-nitrobenzyl group, we achieved controlled activation of the sensor after DNAzyme delivery into cells. Together, these results demonstrate that such a DNAzyme-based sensor provides a promising platform for detection and quantification of Na(+) in living cells.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4434688PMC
http://dx.doi.org/10.1073/pnas.1420361112DOI Listing

Publication Analysis

Top Keywords

metal ions
16
vitro selection
8
fluorescent sensors
8
substrate strand
8
demonstrate dnazyme-based
8
dnazyme-based sensor
8
na+
6
dnazyme
5
sensor
5
selection sodium-specific
4

Similar Publications

Polysaccharides-Directed Biomineralization of Enzymes in Hierarchical Zeolite Imidazolate Frameworks for Electrochemical Detection of Phenols.

ACS Appl Mater Interfaces

January 2025

Lab of Applied Biocatalysis, National Engineering Research Center of Wheat and Corn Further Processing, School of Food Science and Engineering, South China University of Technology, No. 381 Wushan Road, Guangzhou 510640, Guangdong China.

Biomineralization of enzymes inside rigid metal-organic frameworks (MOFs) is appealing due to its biocompatibility and simplicity. However, this strategy has hitherto been limited to microporous MOFs, leading to low apparent enzymatic activity. In this study, polysaccharide sodium alginate is introduced during the biomineralization of enzymes in zeolitic imidazolate frameworks (ZIFs) to competitively coordinate with metal ions, which endows the encapsulated enzyme with a 7-fold higher activity than that in microporous ZIFs.

View Article and Find Full Text PDF

Multi-effect synergistic induction of unsaturated MnO on sandy sediment for enhanced manganese adsorption and byproduct resource recovery in solar evaporation.

J Hazard Mater

January 2025

School of Ecology and Environment, Zhengzhou University, 100 Kexue Avenue, Zhengzhou 450001, PR China; Henan International Joint Laboratory of Water Cycle Simulation and Environmental Protection, Zhengzhou 450001, PR China. Electronic address:

The efficient removal of Mn(II) from wastewater is crucial for safeguarding water quality, yet existing adsorbents face significant challenges, including high costs, poor resistance to ionic interference, and scalability limitations. This study addresses these challenges by utilizing abundant natural sandy sediment (SS) as a substrate to load unsaturated MnO via in-situ oxidation, creating a novel adsorbent (MOSS). MOSS exhibits a remarkable Mn(II) adsorption capacity of 1.

View Article and Find Full Text PDF

Design and synthesis of a carbohydrate-derived chemosensor for selective Ni(II) ion detection: A turn-off approach.

Carbohydr Res

January 2025

Bioorganic Laboratory, Department of Chemistry, University of Delhi, Delhi, 110007, India; Department of Chemistry, Ramjas College, University of Delhi, Delhi, 110007, India. Electronic address:

Nickel, an essential transition metal, plays a vital role in biological systems and industries. However, exposure to nickel can cause severe health issues, such as asthma, dermatitis, pneumonitis, neurological disorders, and cancers of the nasal cavity and lungs. Due to nickel's toxicity and extensive industrial use, efficient sensors for detecting Ni ions in environmental and biological contexts are essential.

View Article and Find Full Text PDF

Colorimetric Xylenol Orange: A Long-Buried Aggregation-Induced Emission Dye and Restricted Rotation for Dual-Mode Sensing of pH and Metal Ions.

Anal Chem

January 2025

Key Laboratory of Advanced Materials of Tropical Island Resources of Ministry of Education, School of Chemistry and Chemical Engineering, Hainan University, Haikou 570228, China.

As the third largest class of dyes in the world, triphenylmethane dyes are widely applied in colorimetric sensing. However, triphenylmethane dyes are commonly nonfluorescent, which limits their sensing applications. It is worthwhile to study the fluorescence off/on control of triphenylmethane dyes and promote the applications of triphenylmethane dyes in sensing technology.

View Article and Find Full Text PDF

Hydroquinone (HQ) and copper ions (Cu) are categorized as environmental pollutants that are severely limited in water. Designing a selective assay for discriminating HQ from its two isomers and the convenient determination of Cu is of great importance. Herein, a Tb-based metal-organic framework (Tb-MOF) and HQ are assembled innovatively into a ratiometric fluorescence nanoprobe to selectively distinguish HQ and subsequent quantitative visual detection of Cu.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!