The activity of the early signaling enzyme, phospholipase Cβ1b (PLCβ1b), is selectively elevated in diseased myocardium and activity increases with disease progression. We aimed to establish the contribution of heightened PLCβ1b activity to cardiac pathology. PLCβ1b, the alternative splice variant, PLCβ1a, and a blank virus were expressed in mouse hearts using adeno-associated viral vectors (rAAV6-FLAG-PLCβ1b, rAAV6-FLAG-PLCβ1a, or rAAV6-blank) delivered intravenously (IV). Following viral delivery, FLAG-PLCβ1b was expressed in all of the chambers of the mouse heart and was localized to the sarcolemma. Heightened PLCβ1b expression caused a rapid loss of contractility, 4-6 weeks, that was fully reversed, within 5 days, by inhibition of protein kinase Cα (PKCα). PLCβ1a did not localize to the sarcolemma and did not affect contractile function. Expression of PLCβ1b, but not PLCβ1a, caused downstream dephosphorylation of phospholamban and depletion of the Ca(2+) stores of the sarcoplasmic reticulum. We conclude that heightened PLCβ1b activity observed in diseased myocardium contributes to pathology by PKCα-mediated contractile dysfunction. PLCβ1b is a cardiac-specific signaling system, and thus provides a potential therapeutic target for the development of well-tolerated inotropic agents for use in failing myocardium.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.yjmcc.2015.04.016DOI Listing

Publication Analysis

Top Keywords

heightened plcβ1b
12
splice variant
8
contractile dysfunction
8
diseased myocardium
8
plcβ1b activity
8
plcβ1b
7
atypical 'b'
4
'b' splice
4
variant phospholipase
4
phospholipase cβ1
4

Similar Publications

Biomimetic Extracellular Vesicles Containing Biominerals for Targeted Osteoporosis Therapy.

ACS Appl Mater Interfaces

January 2025

Organoid Research Center, Institute of Translational Medicine, Shanghai University, Shanghai 200444, People's Republic of China.

Osteoporosis (OP) is a systemic skeletal disorder characterized by decreased bone mineral density and a heightened risk of fractures. Therapies for OP have primarily focused on balancing bone formation and bone resorption, but enhancing the remineralization of osteoporotic bone is also a key strategy for effective repair. Recent insights into biomineralization mechanisms have highlighted the essential role of mineral-containing extracellular vesicles (EVs) secreted by osteoblasts in promoting bone marrow mesenchymal stromal/stem cell (BMSC) differentiation and initiating matrix mineralization.

View Article and Find Full Text PDF

Amidst growing concerns over COVID-19 aftereffects like fatigue and cognitive issues, NRICM101, a traditional Chinese medicine, has shown promise. Used by over 2 million people globally, it notably reduces hospitalizations and intubations in COVID-19 patients. To explore whether NRICM101 could combat COVID-19 brain fog, we tested NRICM101 on hACE2 transgenic mice administered the S1 protein of SARS-CoV-2, aiming to mitigate S1-induced cognitive issues by measuring animal behaviors, immunohistochemistry (IHC) staining, and next-generation sequencing (NGS) analysis.

View Article and Find Full Text PDF

Transcatheter aortic valve repair (TAVR) presents a minimally invasive alternative to traditional surgical valve replacement, albeit not without its own set of complications. A rare complication is the infolding of the self-expanding valve, which can precipitate cardiac arrest. The estimated incidence rate of this complication stands at 1.

View Article and Find Full Text PDF

Introduction: Adolescents living with HIV/AIDS in sub-Saharan Africa have heightened risk for mental health and psychosocial burden owing to their exposure to a multiplicity of adverse conditions such as stigma and discrimination. However, there is no comprehensive evidence synthesis and evaluation of the effectiveness of mental health interventions for adolescents living with HIV/AIDS in this region. We aim to conduct a systematic review to synthesise the literature on existing mental health interventions for adolescents living with HIV/AIDS in sub-Saharan Africa.

View Article and Find Full Text PDF

The roles of KRAS in cancer metabolism, tumor microenvironment and clinical therapy.

Mol Cancer

January 2025

RNA Oncology Group, School of Public Health, Lanzhou University, Lanzhou, 730000, People's Republic of China.

KRAS is one of the most mutated genes, driving alternations in metabolic pathways that include enhanced nutrient uptaking, increased glycolysis, elevated glutaminolysis, and heightened synthesis of fatty acids and nucleotides. However, the beyond mechanisms of KRAS-modulated cancer metabolisms remain incompletely understood. In this review, we aim to summarize current knowledge on KRAS-related metabolic alterations in cancer cells and explore the prevalence and significance of KRAS mutation in shaping the tumor microenvironment and influencing epigenetic modification via various molecular activities.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!