H2S does not regulate proliferation via T-type Ca2+ channels.

Biochem Biophys Res Commun

Division of Cardiovascular and Diabetes Research, LICAMM, Faculty of Medicine and Health, University of Leeds, Leeds LS2 9JT, UK. Electronic address:

Published: June 2015

T-type Ca(2+) channels (Cav3.1, 3.2 and 3.3) strongly influence proliferation of various cell types, including vascular smooth muscle cells (VSMCs) and certain cancers. We have recently shown that the gasotransmitter carbon monoxide (CO) inhibits T-type Ca(2+) channels and, in so doing, attenuates proliferation of VSMC. We have also shown that the T-type Ca(2+) channel Cav3.2 is selectively inhibited by hydrogen sulfide (H2S) whilst the other channel isoforms (Cav3.1 and Cav3.3) are unaffected. Here, we explored whether inhibition of Cav3.2 by H2S could account for the anti-proliferative effects of this gasotransmitter. H2S suppressed proliferation in HEK293 cells expressing Cav3.2, as predicted by our previous observations. However, H2S was similarly effective in suppressing proliferation in wild type (non-transfected) HEK293 cells and those expressing the H2S insensitive channel, Cav3.1. Further studies demonstrated that T-type Ca(2+) channels in the smooth muscle cell line A7r5 and in human coronary VSMCs strongly influenced proliferation. In both cell types, H2S caused a concentration-dependent inhibition of proliferation, yet by far the dominant T-type Ca(2+) channel isoform was the H2S-insensitive channel, Cav3.1. Our data indicate that inhibition of T-type Ca(2+) channel-mediated proliferation by H2S is independent of the channels' sensitivity to H2S.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bbrc.2015.04.087DOI Listing

Publication Analysis

Top Keywords

t-type ca2+
28
ca2+ channels
16
h2s
9
proliferation
8
proliferation cell
8
cell types
8
smooth muscle
8
ca2+ channel
8
hek293 cells
8
cells expressing
8

Similar Publications

Involvement of Ca3.2 T-type Ca channels and cystathionine-β-synthase in colitis-related visceral hypersensitivity in mice.

J Pharmacol Sci

December 2024

Laboratory of Pharmacology and Pathophysiology, Faculty of Pharmacy, Kindai University, 3-4-1 Kowakae, Higashi-Osaka, 577-8502, Japan. Electronic address:

We tested the hypothesis that Ca3.2 T-type Ca channels, which can be rebooted by sulfides from Zn inhibition under physiological conditions, and sulfide-generating enzymes including cystathionine-β-synthase (CBS) would participate in the colitis-related visceral pain in mice treated with 2,4,6-trinitrobenzene sulfonic acid (TNBS). The visceral hypersensitivity following TNBS-induced colitis was abolished by an inhibitor or genetic deletion of Ca3.

View Article and Find Full Text PDF

In congenital stationary night blindness, type 2 (CSNB2)-a disorder involving the Ca1.4 (L-type) Ca channel-visual impairment is mild considering that Ca1.4 mediates synaptic release from rod and cone photoreceptors.

View Article and Find Full Text PDF
Article Synopsis
  • Calcium ions play a crucial role in hair cell functions and T-type calcium antagonists may help protect against hearing loss, yet there has been no research using T-type antagonists like ethosuximide in Cdh23 mouse models.
  • The study aimed to assess the effectiveness of ethosuximide in preventing age-related hearing loss in Cdh23 erl/erl mice, potentially leading to therapeutic options for humans suffering from similar conditions.
  • Researchers conducted an experiment with male and female Cdh23 mice, dividing them into a saline control group and an ethosuximide treatment group, measuring hearing responses and cell loss to evaluate the protective effects of the drug.
View Article and Find Full Text PDF
Article Synopsis
  • The study investigates how flavonoids affect insulin secretion in β-cells, particularly focusing on resokaempferol (ResoK) and its potential benefits for insulin deficiency.
  • Researchers tested INS-1 β-cells and pancreatic islets from rats to assess the ability of ResoK to enhance insulin secretion under glucose stimulation.
  • Results showed that ResoK increases insulin secretion by stimulating L-type calcium currents, even in dysfunctional β-cells, suggesting it could be a promising treatment strategy for improving insulin secretion.
View Article and Find Full Text PDF

Cervical cancer-produced neuromedin-B reprograms Schwann cells to initiate perineural invasion.

Cell Death Dis

August 2024

Department of Gynecologic Oncology, the International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.

Perineural invasion (PNI) is a new approach of cervical cancer invasion and metastasis, involving the cross-talk between tumor and nerve. However, the initiating signals and cellular interaction mechanisms of PNI remain largely elusive. The nerve-sparing radical hysterectomy (NSRH) proposed to improve postoperative quality of life is only applicable to cervical cancer patients without PNI.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!