Transgenic nonhuman primate models are an increasingly popular model for neurologic and neurodegenerative disease because their brain functions and neural anatomies closely resemble those of humans. Transgenic Huntington's disease monkeys (HD monkeys) developed clinical features similar to those seen in HD patients, making the monkeys suitable for a preclinical study of HD. However, until HD monkey colonies can be readily expanded, their use in preclinical studies will be limited. In the present study, we confirmed germline transmission of the mutant huntingtin (mHTT) transgene in both embryonic stem cells generated from three male HD monkey founders (F0) and in second-generation offspring (F1) produced via artificial insemination by using intrauterine insemination technique. A total of five offspring were produced from 15 females that were inseminated by intrauterine insemination using semen collected from the three HD founders (5 of 15, 33%). Thus far, sperm collected from the HD founder (rHD8) has led to two F1 transgenic HD monkeys with germline transmission rate at 100% (2 of 2). mHTT expression was confirmed by quantitative real-time polymerase chain reaction using skin fibroblasts from the F1 HD monkeys and induced pluripotent stem cells established from one of the F1 HD monkeys (rHD8-2). Here, we report the stable germline transmission and expression of the mHTT transgene in HD monkeys, which suggest possible expansion of HD monkey colonies for preclinical and biomedical research studies.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4631054 | PMC |
http://dx.doi.org/10.1016/j.theriogenology.2015.03.016 | DOI Listing |
Stem Cells
January 2025
Wellcome Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, UK.
To enable robust expression of transgenes in stem cells, recombinase mediated cassette exchange at safe harbour loci is frequently adopted. The choice of recombinase enzyme is a critical parameter to ensure maximum efficiency and accuracy of the integration event. We have explored the serine recombinase family of site-specific integrases and have directly compared the efficiency of PhiC31, W-beta and Bxb1 integrase for targeted transgene integration at the Gt(ROSA)26Sor locus in mouse embryonic stem cells.
View Article and Find Full Text PDFCells
December 2024
Cardiac Signaling Center, University of South Carolina, Medical University of South Carolina and Clemson University, Charleston, SC 29425, USA.
Over 200 point mutations in the ryanodine receptor (RyR2) of the cardiac sarcoplasmic reticulum (SR) are known to be associated with cardiac arrhythmia. We have already reported on the calcium signaling phenotype of a point mutation in RyR2 Ca binding site Q3925E expressed in human stem-cell-derived cardiomyocytes (hiPSC-CMs) that was found to be lethal in a 9-year-old girl. CRISPR/Cas9-gene-edited mutant cardiomyocytes carrying the RyR2-Q3925E mutation exhibited a loss of calcium-induced calcium release (CICR) and caffeine-triggered calcium release but continued to beat arrhythmically without generating significant SR Ca release, consistent with a remodeling of the calcium signaling pathway.
View Article and Find Full Text PDFBackground Koala Retrovirus-A is a gamma-retrovirus that is spreading across wild koala populations through horizontal and vertical transmission, contributing significantly to genomic diversity across and even within koala populations. Previous studies have estimated that KoRV-A initially integrated into the koala genome less than 50,000 years ago, but the precise origins and the patterns of spread after its endogenization remain unclear. Results In this study, we analyzed germline insertions of KoRV-A using whole-genome sequencing data from 405 wild koalas, representing nearly the species' entire geographic range.
View Article and Find Full Text PDFEBioMedicine
January 2025
Imperial College London, Department of Infectious Disease, UK. Electronic address:
Background: We report findings from an experimental medicine study of rationally designed prefusion stabilised native-like HIV envelope glycoprotein (Env) immunogens, representative of global circulating strains, delivered by sequential intramuscular injection.
Methods: Healthy adult volunteers were enrolled into one of five groups (A to E) each receiving a different schedule of one of two consensus Env immunogens (ConM SOSIP, ConS UFO, either unmodified or stabilised by chemical cross-linking, followed by a boost with two mosaic Env immunogens (Mos3.1 and Mos3.
Genetics
December 2024
Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!