PRMT4 is involved in insulin secretion via the methylation of histone H3 in pancreatic β cells.

J Mol Endocrinol

Department of AnatomyKorea University College of Medicine, 126-1, Anam-dong 5-ga, Seongbuk-gu, Seoul 136-701, KoreaDepartment of SurgerySamsung Medical Center, 81, Irwon-Ro, Gangnam-Gu, Seoul 135-710, KoreaDepartment of PathologyKorea University College of Medicine, 126-1, Anam-dong 5-ga, Seongbuk-gu, Seoul 136-701, KoreaLee Gil Ya Cancer and Diabetes InstituteGachon University, Inchon, Kyunggi do, Korea

Published: June 2015

The relationship between protein arginine methyltransferases (PRMTs) and insulin synthesis in β cells is not yet well understood. In the present study, we showed that PRMT4 expression was increased in INS-1 and HIT-T15 pancreatic β cells under high-glucose conditions. In addition, asymmetric dimethylation of Arg17 in histone H3 was significantly increased in both cell lines in the presence of glucose. The inhibition or knockdown of PRMT4 suppressed glucose-induced insulin gene expression in INS-1 cells by 81.6 and 79% respectively. Additionally, the overexpression of mutant PRMT4 also significantly repressed insulin gene expression. Consistently, insulin secretion induced in response to high levels of glucose was decreased by both PRMT4 inhibition and knockdown. Moreover, the inhibition of PRMT4 blocked high-glucose-induced insulin gene expression and insulin secretion in primary pancreatic islets. These results indicate that PRMT4 might be a key regulator of high-glucose-induced insulin secretion from pancreatic β cells via H3R17 methylation.

Download full-text PDF

Source
http://dx.doi.org/10.1530/JME-14-0325DOI Listing

Publication Analysis

Top Keywords

insulin secretion
16
pancreatic cells
12
insulin gene
12
gene expression
12
insulin
8
inhibition knockdown
8
high-glucose-induced insulin
8
prmt4
7
cells
5
prmt4 involved
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!