Disease resistance against xylem-colonizing pathogenic bacteria in crops. Plant pathogenic bacteria cause destructive diseases in many commercially important crops. Among these bacteria, eight pathogens, Ralstonia solanacearum, Xanthomonas oryzae pv. oryzae, X. campestris pv. campestris, Erwinia amylovora, Pantoea stewartii subsp. stewartii, Clavibacter michiganensis subsp. michiganensis, Pseudomonas syringae pv. actinidiae, and Xylella fastidiosa, infect their host plants through different infection sites and paths and eventually colonize the xylem tissues of their host plants, resulting in wilting symptoms by blocking water flow or necrosis of xylem tissues. Noticeably, only a relatively small number of resistant cultivars in major crops against these vascular bacterial pathogens except X. oryzae pv. oryzae have been found or generated so far, although these pathogens threaten productivity of major crops. In this review, we summarize the lifestyles of major xylem-colonizing bacterial pathogens and then discuss the progress of current research on disease resistance controlled by qualitative disease resistance genes or quantitative trait loci against them. Finally, we propose infection processes of xylem-colonizing bacterial pathogens as one of possible reasons for why so few qualitative disease resistance genes against these pathogens have been developed or identified so far in crops.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00122-015-2521-1 | DOI Listing |
Environ Sci Process Impacts
January 2025
Department of Pulmonary and Critical Care Medicine, Clinical Research Center for Chronic Obstructive Airway Diseases, University of Ulsan College of Medicine, Asan Medical Center, 88, Olympic-ro 43-Gil, Songpa-gu, Seoul 05505, South Korea.
: Exposure to particulate matter <2.5 μm (PM) is linked to chronic obstructive pulmonary disease (COPD), but most studies lack individual PM measurements. Seasonal variation and their impact on clinical outcomes remain understudied.
View Article and Find Full Text PDFFront Vet Sci
December 2024
Faculty of Veterinary Medicine, Helsinki One Health, University of Helsinki, Helsinki, Finland.
Background: Canine gastroenteritis (CGE) is a common cause for seeking veterinary care in companion animal medicine and an area where antibiotics have been reported to be widely used. Therefore, creating relevant benchmarks for antibiotic use in CGE is important when implementing and analyzing antibiotic stewardship interventions. The aim of this paper was to describe the level and temporal trend of systemic antibiotic use for CGE in Sweden between 2020 and 2023.
View Article and Find Full Text PDFFront Physiol
December 2024
Institute of Disinfection and Pest Control, Beijing Center for Disease Prevention and Control, Beijing, China.
Background: (Skuse) is an invasive and widespread mosquito species that can transmit dengue, chikungunya, yellow fever, and Zika viruses. Its control heavily relies on the use of insecticides. However, the efficacy of the insecticide-based intervention is threatened by the increasing development of resistance to available insecticides.
View Article and Find Full Text PDFMol Biol Res Commun
January 2025
Department of Biotechnology, Faculty of Biological Science and Technology, University of Isfahan.
is a gram-negative bacterium that causes a diversity of diseases in numerous plants. Strategies to inhibit growth include protective procedures; however, controlling the disease is complicated due to its rapid spread. Several antimicrobial agents can prevent this disease, such as chemical compounds, biological agents, secondary metabolites, nanoparticles, bacteriophages, and antimicrobial peptides (AMPs).
View Article and Find Full Text PDFInt J Biol Sci
January 2025
Department of Thyroid and Hernia Surgery, Shengli Clinical Medical College of Fujian Medical University, Fujian Provincial Hospital, Fuzhou University Affiliated Provincial Hospital, Fuzhou City, Fujian Province 350001, China.
Papillary thyroid carcinoma (PTC) is the most common type of thyroid cancer, and patients with the BRAF mutation often exhibit aggressive tumor behavior. Here, we identified Arylsulfatase I (ARSI) as a gene whose expression was significantly upregulated in BRAF PTC and was associated with poor prognosis. High ARSI expression correlated with advanced disease stage, BRAF mutation, and worse overall survival in PTC patients.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!