G-protein-coupled receptors (GPCRs) are key regulators of skeletal homeostasis and are likely important in fracture healing. Because GPCRs can activate multiple signaling pathways simultaneously, we used targeted disruption of G(i) -GPCR or activation of G(s) -GPCR pathways to test how each pathway functions in the skeleton. We previously demonstrated that blockade of G(i) signaling by pertussis toxin (PTX) transgene expression in maturing osteoblastic cells enhanced cortical and trabecular bone formation and prevented age-related bone loss in female mice. In addition, activation of G(s) signaling by expressing the G(s) -coupled engineered receptor Rs1 in maturing osteoblastic cells induced massive trabecular bone formation but cortical bone loss. Here, we test our hypothesis that the G(i) and G(s) pathways also have distinct functions in fracture repair. We applied closed, nonstabilized tibial fractures to mice in which endogenous G(i) signaling was inhibited by PTX, or to mice with activated G(s) signaling mediated by Rs1. Blockade of endogenous G(i) resulted in a smaller callus but increased bone formation in both young and old mice. PTX treatment decreased expression of Dkk1 and increased Lef1 mRNAs during fracture healing, suggesting a role for endogenous G(i) signaling in maintaining Dkk1 expression and suppressing Wnt signaling. In contrast, adult mice with activated Gs signaling showed a slight increase in the initial callus size with increased callus bone formation. These results show that G(i) blockade and G(s) activation of the same osteoblastic lineage cell can induce different biological responses during fracture healing. Our findings also show that manipulating the GPCR/cAMP signaling pathway by selective timing of G(s) and G(i) -GPCR activation may be important for optimizing fracture repair.

Download full-text PDF

Source
http://dx.doi.org/10.1002/jbmr.2540DOI Listing

Publication Analysis

Top Keywords

fracture healing
16
bone formation
16
signaling
10
-gpcr activation
8
maturing osteoblastic
8
osteoblastic cells
8
trabecular bone
8
bone loss
8
fracture repair
8
endogenous signaling
8

Similar Publications

Background: The periosteum is the main organ responsible for bone regeneration. Vascularized Periosteal Grafts (VPG) have demonstrated exceptional efficacy and speed in facilitating bone union among children with challenging bone healing conditions. Despite their promising results, the overall impact of these interventions has yet to be comprehensively evaluated through systematic review.

View Article and Find Full Text PDF

Objective: This study aims to utilize bioinformatics and network pharmacology to identify the active components of Bushen Tiansui decoction (BSTSD) and elucidate its molecular mechanisms and targets in promoting delayed fracture healing.

Materials And Methods: Using various databases and tools, we identified 155 active compounds within BSTSD's herbal components. Key compounds such as eriodictyol and β-sitosterol were noted for their significant anti-inflammatory, antioxidant, and immunomodulatory effects, which are crucial for promoting fracture healing.

View Article and Find Full Text PDF

Vacancy-Mediated Increases in Brine-Salt Surface Energies.

Langmuir

January 2025

Applied Systems Analysis & Research, Sandia National Laboratories, Albuquerque, New Mexico 87123, United States.

Salt formations have been explored for the permanent isolation of spent nuclear fuel based on their high thermal conductivity, self-healing nature, and low hydraulic permeability to brine flow. Vacancy defect concentrations in salt complicate fracture mechanics not driven by dislocation dynamics and can influence the resulting surface structure. Classical molecular dynamic simulations were used to simulate tensile testing of salt crystals (halite) with vacancy defect concentrations of up to 0.

View Article and Find Full Text PDF

Background: Osteoporosis fracture is a common and most serious complication of osteoporosis.

Hypothesis: This study sought to assess the level, the diagnostic potential, and the effect of circulating miR-4534 in osteoporotic fractures.

Methods: GSE74209 and GSE93883 were analyzed using GEO2R online tool for differentially expressed microRNAs in osteoporotic fractures.

View Article and Find Full Text PDF

The journey of bone repair is a lengthy process. Traditionally, oral or topical medications have been employed to facilitate healing, approaches that are not only costly but may also lead to adverse effects such as gastrointestinal damage. With advancements in electrophysiology, the significance of bioelectric activity in tissue repair has become increasingly prominent, thereby enhancing the focus on research into electroacupuncture (EA) for bone repair.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!